MODULAR

> > B> B> > >

COMPUTER
1
LESSON

by

Paul M. Roper
2 DESIGN

David V. Loertscher

4 H At E€E g€ € - - - =«

MODULAR COMPUTER LESSON DESIGN

APPLE VERSION

PRELIMINARY EDITION

by
Paul M. Roper

&

David V. Loertscher

Hi Willow Research and Publishing

1982

c. 1982 by Paul M. Roper and David V. Loertscher

Hi Willow Research and Pulishing
Box 1801,
Fayetteville, Arkansas 72702-1801

ISBN: 0-931510-09-0

TABLE OF CONTENTS

IntroduCtion.sseuseseecesssasessosesnsarocsnnns tetessnassrsnnans 1
Chapter one: Modular Computer Lesson Design....... tettensasatnss 3
m.'.ll...l.’.l..-..¢ll!...il... llllllllllllll LI B B B B BB B B 7

Apple Derm Sa]llple PI‘OgraJTl.l.".......l.'I.I.!I""....'.II. 10
Chapter Two: The Bag of Tricks; or Useful Subroutines........... 25

Hit any key to CONtINUE. .. vvvversessvsvocensnnsccacssncnnns 26
Press return t0 CONTINUE...c.civssrresvetovsconcannonnsnasas 27
Press space bar to continue....... Certteteetateataeenaenann 28
ASCII character codeS...eeeaees Petresaersrrronsensnansnsses 29

Have a menu and allow student a choiC€...veesversvesoneanes 30
Run one program from within another........... svssssassaess 31
Prompt student for response and print error message........ 32

Use of borders around titles or to highlight text.......... 34

INTRODUCTION

Many educators, whether in formal, informal, or corporate
education, are becoming computer literate and know the rudiments
of progfamming. These persons know the functions of computer
commands like LOAD, LIST, RUN, PRINT,..etc. What they may not

know is how to use these commands to create a lesson, i.e., they

have the tools but do not know how to proceed systematically. The

authors have seen a number of beginners try to write lessons.
They struggle - not because they don't know how to get the
computer to respond, but they get bogged down in hundreds of line
numbers and lose their place. They may have used flowcharting
techniques but like other programmers desire a better way of
structuring their programs.
This book provides a simple structure for a computerized
lesson. It breaks a large task or lesson down into a number of
pieces, each of which can be programmed or coded separately and
then pieced together into a whole. It is something like putting a
puzzle or a patchwork quilt together.
Chapter one teaches the technique and provides a detailed
example to follow. Chapter two provides a number of tricks that
can be put into the lessons to make them more professional.
There are a number of commercially available authoring

programs on the market such as Genius I, Super Apple Pilot,

Blocks...etc. All these have their strong points. They also have
limitations. This book provides an alternative to those authoring
systems which allows the creative teacher and programmer another
way of building lessons for the computer using BASIC. Although
the text has been written with Applesoft BASIC in mind, the
technique taught here is useful no matter what computer or

computer language is employed.

CHAPTER ONE
MODULAR COMPUTER LESSCN DESIGN

Modular computer lesscn design is a systematic way of creating computerized
lessons. Its concept is to divide a programming task down into small segments
which can be programmed independently and then pieced together to create an
educational lesson. It is similar to the cut and paste technique in the graphic
arts where bits and pieces of this and that are combined to create a pleasing
handout, poster, etc. Each piece (module) of the computerized lesson can stand
alone, is programmed separately, and will run independent of the other medules.

Visually, a computerized lesson would be programmed in the following modules:

CONTROL
MODULE

PROGRAM
MIDULE (S)

SUB
MODULE (S)

UTILITY
MODULE(S)

The compments of each of the modules in the model might include:

1. Control module:
a. documentation (what the program does)
b. open any files needed
Cc. initialize any variables used
d. dimension any arrays used
e. menu
f. GOSUB statements for the various menu choices
g. END statement

2, Program modules (are designated as subroutines in the program).
a. actual lesson content
b. both text and graphics used only once in the program (graphics
or text used over and over should be in the utility module)

3. Sub-modules (are subroutines)
a. sub-sections of lesson content if it is desirable to break the
module down into smaller pieces.

4, Utility modules (are subroutines)
a. title graphic
b. graphics called more than once
c. sound routines called more than once
d. sorts
e. time delays
f. forward or backward paging
g. keyboard input controls
h. error trapping

STEP ONE

The first step of modular computer lesson design is to define the lesson
problem. Here, the steps of instructional design should be taken into accoumt.
This includes an analysis of the intended audience, the objectives of the lesson,
the content to be covered, and the strategy that will be employed. The computer-
ized lesson can be independent of other learning materials or it can be one
component in a milti-media unit of instruction.

SAMPLE LESSON PROBLEM DEVELOPMENT

Title of sample lesson: Apple Demo

Audience: a student who has mastered the fundamental commands of
a programming language and is ready to use those skills to write
computerized tutorials,

Objectives:

1. The student will be able to use the sample lesson as a model
to follow in the construction of a computerized lesson.

2. The program used in the example will be simple enough that
students will be able to follow through the various modules
without becoming confused.

3. Enough programming techniques will be demonstrated in the
sample lesson so that students can copy, select, add to,
and delete ideas as they program their own lessons.

4, A secondary objective is to create a lesson which demonstrates
some of the features of the Apple computer.

STEP TWO

The next step in modular design is to break down the main problem into
smaller problems. Each of the features of the desired program should be
listed. The features are then studied and prioritized according to any
constraints that might be present.

SAMPLE LESSON DETAILED FEATURES

Programming features to demonstrate:
1. use of a menu*
2. use of subroutines*
3. documentation within a program®*
4. control of input from the keyboard*
5. control of program flow*
6. commmication with the user*
7. testing responses from the user*
8. handling errors*

Apple features to demonstrate in the lesson:
1. computers can count®

. computers can compute and compare®

. computers can do graphics* '

computers can create sound

. tutorial type computer lessons*

. simulation type computer lessons

. gaming type computer lessons

. drill type computer lessons®

W o ~3 O ot B NN
. .

management of computer lessons
*features chosen for final product

STEP THREE

The next step is to create a VIOC (visual table of contents) of our lesson
features. This will be comparable to creating a table of contents for a book
which will 1ist module titles (chapter titles) and will give beginmning program
line numbers of each module (page numbers for the chapters). Line mumbers
should be added only if they can be easily forecast in advance. Sub-parts
of modules (parts of a book chapter) are drawn underneath main modules. Any
subroutines referenced by the module are also listed under that module.

1000

Control
Module

elc

I can count
Module

400

(oog}

In what
increments

2000

Graphics @'
Module
100 0
Shapes Full Color
screen bars

VT O C (VISUAL TABLE OF QONTENTS)

3000
Compute § !!!"
Compare
Module
3100 00
+ -X/ Compare
2 valueg

10000
11000
12000
13000
14000
15000
15500
16000

4000
I can drill
Module
4100 4200
Addition Multiply

Input menu choice
Scrolling routine

Delay routine

Press space bar
Color generator
Laser sound maker
Poke sound routine

Error handler

17000 Random number generator
Generic problem printer
Get math response

18000
19000

19500 Addition problems

19800 Multiplication problems

@@.
.
sy |

The VITOC on the previous page lists every subroutine that is called by
the program. At the planning stage, the programmer can't forcast every
detail of the program so the VIOC may only include the major sections, As
thinking and planning progess, the VIOC will become more detailed, At some
point, the VIOC will be a complete table of contents to the program like the

example above.

STEP FOUR.

The actual programming task is now ready to begin. Each module on the
VIOC should be programmed or coded separately, The programmer begins at the
top - or the control module and continues in order until the last module is
completed. This is called top-down programming.

Each module is an independent piece of the program and can be written

and tested before going on to the next module. This can be done by just typing

in RUN starting line # of the module, or GOSUB starting line # of the subroutine.

It is important to find and clean up problems early in the program rather than
having them stack up. Psychologically, this helps create many small successes
rather than a mountainous number of problems to tackle all at one time.

One nice thing about programming in modules is that several persons can be
assigned various modules of the program to write. Some of the modules may already
be be available from other programs that have been written or can be borrowed
from other programmers. The idea here is to keep a library of utilities and other
useful programs handy that can be pulled into any lesson being written. This
could be called a cut and paste methodology - get the modules you need anywhere
you can get them and put them together.

The Apple System Master has a very useful utility entitled RENUMBER. Using
this program, it is very easy to merge a number of programs together into

a single program with one sequence of line numbers. If the two programs to be

merged have duplicate line numbers, the RENUMBER program can supply a new
sequence of line mmbers so that the two programs can merge easily.
If you have a library of usefuly programs or utilities handy, it is
very important that each of these have clear titles and descriptions
of exactly what they do. A good catalog of what you have is very important!
Be sure to keep the VIOC - even after the program is written. It
will always be useful as a key to that program.
In the following pages, the actual program "Apple Demo' is printed out.
The program is listed on the left of the page and comments have been

added in the right hand column to help the reader follow the logic.

10

10 REM APPLE DEMO

20 REM BY MIKE ROPER

30 REM C. 1982

35 REM **&xdkkdkadkadx The control modube begins.
40 REM *CONTROL MODULE* .

45 REM **%*%%xkkdkkhkhkdk*x

50 BEEPS = CHRS$ (7): REM STORE BEEP

100 GOSUB 15500: REM POKE SOUND

110 FOR I = 0 TO 3: READ ADD$(I): NEXT 1 £.1710-135 initialize questions
120 FOR I = 0 TO 3: READ AANS$(I): NEXT I and answer variable forn the
130 FOR I = 0 TO 3: READ MULTS (I): NEXT I duill modufe.

135 FOR I = 0 TO 3: READ MANSS$(I): NEXT I

325 REM

490 REM xkkdkikhhkkhkhdk

500 REM ** MAIN MENU **
505 REH kkkkkhkkkhkhktkhhkkx

510 REM
550 HOME : VTAB 8: HTAB 5

560 PRINT "==-=-= MAIN MENU ---—-"))

570 PRINT : PRINT " 1. I CAN COUNT" main menu 48 presented.
580 PRINT : PRINT " 2. I CAN DO GRAPHICS"

590 PRINT : PRINT ® 3. I CAN COMPUTE AND COMPARE"

600 PRINT : PRINT " 4. I CAN DRILL"

610 PRINT : PRINT " 5, END"

630 GOSUB 10000: REM GET ANSWER
640 ON ANS GOSUB 1000,2000,3000,4000

650 IF ANS < > 5 THEN 550
660 END End statement comes at the end

0§ the control modufe,

Note that remarh statements placed on £. 100 and 620 clanify what will happen
at that point in the pregham,

Note that the menu allows the student to get out of the program. This is a very
Ampontant characteristic that should be included in ablmost all computerdized Lessons.

11

989 REM
900 REM *rkkdhkdhkhkkhdhkthhhdsk

1000 REM * I CAN COUNT MODULE *
1005 REM ****kkhkkhdhkhhrkhhhddd

1008 REM

1010 TIME = 20

1050 REM

1100 HOME : VTAB 10

1200 PRINT "==-—- MENU ——=-- "

1210 PRINT : PRINT

1220 PRINT : PRINT "1, HOW HIGH AND LOW" Note that a sub-menu has
1230 PRINT : PRINT "2, IN WHAT INCREMENTS" been created and that
1240 PRINT : PRINT "3. RETURN TO MAIN MENU" an exit to the main menu
1250 GOSUB 10000 has been provided.

1255 IF ANS = 3 THEN RETURN

1260 ON ANS GOSUB 1300,1400,1500

1270 GOTO 1100

1290 REM *#akxkkhkhkmhkhrdhhhhkhhdhddhk

1292 REM *HOW HIGH & LOW SUB MODULE*

1294 REM *kkkkkkkxhkhthhddrhhkhhhrtidsn

1300 HOME : VTAB 10

1310 PRINT "I CAN COUNT FROM :": PRINT : PRINT
1315 PRINT "™ ONE MILLION BELOW ZERO": PRINT
1318 PRINT "TO ONE MILLION ABOVE ZERO": PRINT
1320 PRINT : PRINT "WOULD YOU LIKE ME TO COUNT FOR YOU?"
1321 PRINT : INPUT "(Y OR N) ";ANSS

1330 IF LEFT$ (ANSS$,1) = "Y" THEN 1380

1340 HOME : GR : TEXT : GOSUB 15000

1341 FOR I =1 TO 50: NEXT I

1345 HOME : VTAB 10: HTAB 5

1346 PRINT "OK, BUT I REALLY DID WANT TO...."
1350 GOSUB 11000: HOME : GOTO 1100

1380 HOME : PRINT "SO YOU WON'T BE HERE ALL DAY WAITING"
1381 PRINT : PRINT "FOR ME TO COUNT, KEEP THE NUMBERS SMALL"
1382 PRINT : PRINT "FOR EXAMPLE, FROM 1000 TO 50007

1383 PRINT : PRINT

1385 INPUT "WHERE SHOULD I START COUNTING ?";BEG

1386 PRINT : PRINT

1388 INPUT "WHERE SHOULD I STOP COUNTING?";QUIT
1390 FOR I = BEG TO QUIT

1392 ONERR GOTO 16000

1393 GOSUB 12000

1395 PRINT I:" ";

1397 NEXT I

1398 GOSUB 11000: HOME : GOTO 1100

The ON command on Line 1260 45 a very easy way to skip fo various sub-modules.

1399
1400
1405
1410
1415
1420
1430

1435
1440
1450
1465
1470
1475
1480
1485
1490
1495
1500
1600
1845
1990
2000
2005
2010
2050
2060
2070
2075
2080
2090
2092
2093
2094
2096

12

REM *khkkkkhkkdxhhhhrthhdd

REM * INCREMENT S-MODULE *

REM Y222 2222232132228 2 &4

HOME : VTABR 5

PRINT "I CAN COUNT BY ANY INCREMENT YOU LIKE.": PRINT
PRINT "1 CAN COUNT FORWARD OR BACKWARD"

PRINT : PRINT "(TO MAKE ME PRINT BACKWARD, ENTER": PRINT : PRINT "A
NEGATIVE NUMBER FOR THE INCREMENT)"

VTAB 15: INPUT "BY WHAT INCREMENT SHOULD I COUNT ?":;J: PRINT
PRINT : INPUT "WHERE SHOULD I START COUNTING ?":BEG: PRINT
PRINT : INPUT "WHERE SHOULD I STOP COUNTING ?2?";QUIT

HOME

FOR I BEG TO QUIT STEP J

ONERR GOTO 16000

PRINT I;" ";

GOSUB 12000

NEXT I

GOSUB 11000: GOTO 1100

RETURN

REM

GOSUB 12000: HOME : NEXT J

REM khkkhhkkhkhkkkhkhkitkkkk

REM * GRAPHICS MODULE *

REM kakkkhkkdknrkrkhhddnk

REM

TEXT : HOME : VTAB 10: HTAB 10
PRINT "-- I CAN DO GRAPHICS --"

PRINT : PRINT " 1.SBAPES"

PRINT : PRINT " 2.FULL SCREEN ONE COLOR"
PRINT : PRINT " 3.BARS OF DIFFERENT COLOR"
PRINT : PRINT " 4.RETURN TO MAIN MENU"

GOSUB 10000

IF ANS = 4 THEN RETURN

ON ANS GOSUB 2100,2200,2300
GOTO 2050

The UTAB and HTAB commands help position the menus and the text on the screen.

The variables are named s0 that they are indicative of theirn gunction.

Sometimes, REM L8 used just to create a space Lin the proghamming itself o sef
o4d sections of the proghram. : 9 J

2098
2100
2101
2102
2103
2105
2107
2109
2111
2113
2115
2118
2120
2125
2130
2135
2140
2145
2147
2150
2155
2160
2165
2170
2175
2180
2185
2187
2190
2195
2196
2197
2188

REM kkkdkkhkkkhkkkhhkkkkkkhy

REM * SHAPES SUB-MODULE *
REM *H*kdAkhkhdhohhkhhrhkdsd
FORN=1TO 5

HOME : GR

GOSUB 14000

I = 29:J = 29

FOR K = 4 TO 11

HLIN I,J AT K

I =1-1:J=J+1

NEXT K

GOSUB 14000

FOR I =1 TO 10

HLIN 1,5 AT I

NEXT I

FOR I =1 TO 10

VLIN 1,5 AT I

NEXT I

GOSUB 14000

FOR I = 13 TO 18
VLIN 0,8 AT I
NEXT I

REM

GOSUB 14000

PFOR I = 10 TO 20
HLIN 10,20 AT I
NEXT I

GOSUB 14000

FOR I = 21 TO 23
HLIN 0,39 AT I

NEXT I

GOSUB 13000: NEXT N
RETURN

13

Note that variables are used Lo set
the drawing positions o4 the horizontal
and verticle Lines., This cuts down

on the number of programming Lines
that must be wiitten and entered into
the computesn,

14

2199 REM *kkkktkkhkhkkkhhkkkhdk

2200 REM * FULL SCREEN COLOR *

2210 REM *kdkkdkhhkkhkhhhhhdkhs

2215 REM

2250 HOME : VTAB 3

2255 PRINT "HERE ARE THE COLORS :": PRINT : PRINT
2260 PRINT "1, MAGENTA","8. BROWN": PRINT
2265 PRINT "2. DARK BLUE","9., ORANGE": PRINT -
2270 PRINT "3, PURPLE","10 GRAY": PRINT

2275 PRINT "4, DARK GREEN","11, PINK": PRINT
2280 PRINT "5. GRAY 1","12. LIGHT GREEN": PRINT
2285 PRINT "6, MED. BLUE","13. YELLOW": PRINT
2290 PRINT "7. LIGHT BLUE","14. AQUA"™: PRINT
2291 PRINT ™","15. WHITE"

2292 GOSUB 10000

2293 IF ANS < = 0 OR ANS > 15 THEN PRINT BEEPS$;: GOTO 2292
2294 HOME : GR : COLOR= ANS

2296 FOR I =0 TO 39: FOR J = 0 TO 39

2297 PLOT I,J

2298 NEXT J,1

2299 GOSUB 13000: GOTO 2000

2300 REM **kdkdkkdkkhhkk

2301 REM * COLOR BARS *

2302 REM * SUB-MODULE *

2303 REM tkkkkkkhkkikhk

2310 REM

2340 TIME = 50

2350 GR : HOME

2355 FORJ =1 TO 3

2356 GOSUB 15000

2360 FOR I = 0 TO 39

2370 GOSUB 14000: REM RND COLOR

2380 VLIN 0,39 AT I

2385 NEXT I

2390 GOSUB 12000: NEXT J

2392 GOSUB 13000

2395 RETURN

2400 RETURN

The erwon trapping that is done on Line 2293 {8 a very Aimportant part of any
program, 1§ the student pushes any other key than that asked for, the computer
bnows it and responds with some correctional instructions. Scmetimes, the
question will be repeated. Other times, the student might be reprimanded.

2500
2995
3000
3005
3008
3009
3010
3015
3020
3025
3030
3040
3042
3043
3045
3048
3050
3100
3105
3108
3110
3130
3135
3138
3140
3142
3145
3147
3148
3150
3151
3152
3155
3158
3161

REM

REM Rkhhkhhhrkdhhhhrhrhdkd

REM * COMPUTE & COMPARE *

MODULE *
REM **Rdhktkhhshhkhhrahikk

REM *

REM

HOME : VTAB 10

PRINT :

PRINT

"I CAN COMPUTE AND COMPARE...."

VTAB 14: PRINT "1. ADD,SUB,MULT,DIV"
PRINT "2. COMPARE TWO VALUES"
PRINT : PRINT "3, RETURN TO MAIN MENU"

PRINT :

GOSUB 10

000

IF ANS = 3 THEN RETURN
ON ANS GOSUB 3100,3200

GOTO 301
REM

0

REM Ahhdkhhhhkdhrhkhhtdhhs

REM * ADD SUB MULT DIV *

SUB MODULE *
REM *hkddkkhkhhhhkrthhoths

REM *

REM

HOME : VTAB 5
PRINT "I CAN PERFORM THE FOLLOWING :"

VTAB 8
PRINT :
PRINT :
PRINT :
PRINT :
PRINT :
GOSUB 10
IF ANS =

HOME : P
PRINT :

PRINT
PRINT
PRINT
PRINT
PRINT
000

ADD NUMBERS"

SUBTRACT NUMBERS"
MULTIPLY NUMBERS"
DIVIDE NUMBERS"

CHOOSE ANOTHER SUBJECT"

5 THEN RETURN
IF ANS > 3 THEN 3172

RINT

"HOW MANY NUMBERS DO YOU WANT TO

INPUT "(MUST BE 10 OR LESS)";NN
IF NN > 10 THEN 3160

15

16

ADD SUB MULT DIV SUB MODULE, cont.

3162 FOR J = 1 TO NN

3163 PRINT "ENTER NUMBER ";J

3164 INPUT NUM(J): NEXT J

3165 IF ANS = 5 THEN RETURN

3166 ON ANS GOSUB 3168,3173,3180,3185,3198

3167 GOTO 3130

3168 HOME : VTAB 5: FOR J = 1 TO NN

3169 SUM = SUM + NUM(J): PRINT SPC(10);NUM(J)

31700 NEXT J

3171 PRINT SPC(8);"+": PRINT SPC(8);"~—r———=a "
3172 PRINT SPC(10);SUM: GOSUB 13000: RETURN

3173 HOME : VTAB 5:SUM = NUM(1): FOR J = 1 TO NN
3174 SUM = SUM - NUM(J + 1): PRINT SPC(10);NUM(J}
3175 NEXT J: PRINT SPC(8);"-"

3176 PRINT SPC(8);"—=m—=r=== ": PRINT SPC(10);SUM
3179 GOSUB 13000: RETURN

3180 SUM = 1: FOR J = 1 TO NN:SUM = SUM * NUM(J)
3181 PRINT SPC(10);NUM(J): NEXT J

3182 PRINT SPC(8);"X": PRINT SPC(8);"-—--—-— "
3183 PRINT SPC(10);SUM

3184 GOSUB 13000: RETURN

3185 HOME : INPUT "ENTER NUMBER TO BE DIVIDED";DVND
3186 PRINT : INPUT "ENTER NUMBER TO DIVIDE BY ";DIVSR
3187 PRINT : PRINT : PRINT

3188 PRINT TAB{ 10});DVND;" / ";DIVSR;" = ";DVND
3189 GOSUB 13000: RETURN

A considerable amount of effort is made in this part of the progham to gormat
the scneen exactly the way Lt {5 wanted,

The SPC command used above 48 a Little bit betten than TAB because SPC moves
the printing over the numbern of spaces indicated right agier the Last thing printed.

17

3198 REM

3199 REM ***kkkhkkdkkhkhkkhhhks
3200 REM * COMPARE TWO VALUES *
3205 REM * SUB MODULE *
3208 REM F*hkRkhdhrkkhhndhrrhdkdn
3210 HOME : VTAB 5

3215 PRINT "I CAN COMPARE:": PRINT
3220 HTAB 5: PRINT "1. NUMBERS"
3225 HTAB 5: PRINT "2, LETTERS"
3230 HTAB 5: PRINT "3, BOTH NUMBERS AND LETTERS"
3235 HTAB 5: PRINT "4.CHOOSE ANOTHER OPTION"
3240 GOSUB 100600

3243 IF ANS = 4 THEN 3010

3245 ON ANS GOSUB 3260,3270,3280
3250 GOTO 3210

3255 REM

3260 GOSUB 3400

3268 RETURN

3270 ITEMS = "LETTERS"

3275 GOSUB 3300

3278 RETURN

3280 ITEM$ = "NUMBERS AND LETTERS"
3285 GOSUB 3300

3288 RETURN

Line 3245 sends the program to a subroutine nearby which in turn calls
‘another subroutine. Subroutines can call other subroutines.

18

3290 REM
3295 REM ***kkkkhkhhkhhkkhkodkk

3300 REM * ALPHABETIC SORT *

3303 REM *h%kkhhhwhhhhhdkdhds

3305 REM

3310 HOME : VTAB 5

3320 PRINT “OK, LET'S COMPARE ";ITEMS

3325 PRINT : PRINT "HOW MANY ";ITEMS$

3326 PRINT "DO YOU WANT TO ENTER?"

3327 INPUT "(MUST BE NO MORE THAN 10 ITEMS)"™;NN
3330 1IF NN > 10 THEN 3310

3335 REM * INPUT THE ITEMS *

3338 REM

3340 FOR I =1 TO NN

3345 PRINT "ENTER ITEM ";I;: INPUT " ? ";OLDS$(I)
3350 NEXT I

3360 HOME : VTAB 8: HTAB 10

3361 PRINT "AS ENTERED IN ORDER": HTABR 10
3362 PRINT "====ee== ceceeeee "

3365 FOR I =1 TO NN: HTAB 12: PRINT OLDS${(I): NEXT I
3370 START = 1

3375 FOR I = 1 TO NN

3380 FOR K = START TO NN

3383 1IF OLD$(I) < = OLDS$(K) THEN 3387

3385 TEMPS$ = OLDS$(I):OLD$(I) = OLDS$(K):0OLDS$(K) = TEMPS
3387 NEXT K

3390 START = START + 1

3393 NEXT I

3395 VTAB 10: FOR I = 1 TO NN

3397 HTAB 28: PRINT OLDS$(I): NEXT I

3398 GOSUB 13000: RETURN

Note that in Line 3327, the student is instructed on the Limitations of the
nesponse., Clean instrucitions to the siudent are necessary.

There are many ways to progrnam an alphabetic sont. The sont here 44 known
as a bubble sort.

19

3399 REM
3400 REM **xkkkkhkdxhkrhry

3405 REM * NUMERIC SORT *

3410 REM ***rkhkrkhrhrhnn

3415 REM

3420 HOME : VTAB 5

3425 PRINT ™OK, LET'S COMPARE NUMBERS"

3426 PRINT : PRINT "HOW MANY NUMBERS DO YOU WANT TQO ENTER 7"
3427 PRINT : INPUT " (MUST BE LESS THAN 10 ITEMS)";NN

3430 IF NN > 10 THEN 3420

3435 FOR I = 1 TO NN: PRINT "ENTER ITEM ";I;: INPUT " ? ";NUM(I)

3438 NEXT I

3440 HOME : VTAB 8: HTAB 10

3441 PRINT "AS ENTERED IN ORDER": HTAB 10
3442 PRINT "====-=cc== cccecc--- "

3445 FOR I = 1 TO NN: HTAB 12: PRINT NUM(I): NEXT I
3460 START = 1

3470 FOR I = 1 TO NN

3475 FOR K = START TO NN

3480 1IF NUM(I) < = NUM(K) THEN 3490

3485 TEMP = NUM(I):NUM(I) = NUM(K) :NUM(K) = TEMP
3490 NEXT K

3495 START = START + 1

3500 NEXT I

3505 VTAB 10

3510 FOR I =1 TO NN

3515 HTAB 28: PRINT NUM(I)

3520 NEXT I

3525 GOSUB 13000: RETURN

20

3989 REM
3990 REM **Akdkkkdkthkrhkhihhdhhk

4000 REM * I CAN DRILL MODULE *

4005 REM **XXExddhkhhkhkatarirsn

4015 TIME = 1000

4020 HOME : VTAB 10

4025 PRINT "I CAN DRILL IN :": PRINT HTAB 5
4026 PRINT "1. ADDITION": PRINT : HTAB 5
4027 PRINT "2, MULTIPLICATION": PRINT : HTAB 5
4028 PRINT "3, RETURN TO MAIN MENU"

4030 GOSUB 10000

4035 IF ANS = 3 THEN RETURN

4038 ON ANS GOSUB 4100,4200

4040 GOTO 4020

4045 REM

4090 REM **kdkkkhkhhhhadhhs

4100 REM * ADDITION DRILL *

4105 REM **%kdhkdkhhkhdhdhhdhd

4110 REM

4130 GOSUB 17000: REM RANDOM NUMBER GENERATOR
4132 PROBLEMS = ADDS$ (NUM) :ANS$ = AANSS (NUM)
4135 GOSUB 18000: REM PRINT PROBLEM

4140 RETURN

4190 REM

4195 REM kdkkkkkkhhkkkhdhsk

4200 REM * MULTIPLICATION *

4203 REM **kkkdkrkkhhhrkkkksk

4205 REM

4220 GOSUB 17000

4230 PROBLEM$ = MULTS (NUM) :ANS$ = MANSS (NUM)
4240 GOSUB 18000

4250 RETURN

Note that the driills above are coded in very few Lines. The GOSUB commands here
send the program to a generdc problem printer and solver. This way, problem
set up and solution, plus the formatting on the screen need only be proghammed once.

21

9989 REM
9990 REM khkkkkkhhkhhkhkhhrhkthhkk

10000
10003
10020
10050
10070
10090
10092
10095
11000
11010
11020
11050
11060
11070
11080
11090
11092
11095
12000
12005
12010
12050
12060
12065
12070
13000
13005
13010
13030
13050
13060
13070
13090
13095

REM * INPUT MENU CHOICE *

REM hhkkdkkhkkrhhhrrkhthhas |
ONERR GOTO 16000

VTAB 24: HTAB 1: PRINT "ENTER NUMBER FROM MENU";

GET ANS

RETURN

REM

REM **xkkxkkhRkhtrhkhrdnhnd

REM * SCROLLING ROUTINE *
REM hhkkkhkkdnrhhkhhhhrhhhhd
GOSUB 15000

FOR J = 1 TO 25

PRINT

FOR K = 1 TO 100: NEXT K
NEXT J

RETURN

REM

REM R*Akkhkrdkhkhrhhrhd

REM * DELAY ROUTINE *
REM **kdkkhhkhhhhhhhsk
REM

FOR L =1 TO TIME: NEXT L
RETURN

REM

REM *kkkkdkhhhkkhhhhhhhk

REM * PRESS SPACE BAR *

REM hkhkhdkkh kb ke rhhd

REM

VTAB 22

PRINT "PRESS SPACE BAR TO CONTINUE";
GET AS

IF A$ < > CHR$ (32) THEN 13060
RETURN
REM

The time delay here is generic. It can be
set gon different waiting periods based
on the needs of the Lesson at any glven
instance.,

CHR$ (32) is the ASCII code.

22

13990 REM **%kkkkkkdkdhdkhkhhhkkhk

14000 REM * COLOR GENERATOR *
14005 REM **kkkkxankkhkhhhhkhsn

14010 REM _
14050 COLOR= INT (14 * RND (1)) a nandom colon vumber s generated,
14060 RETURN

14065 REM

14990 REM *kkikkkhkhdhkdhkhkkdhkhhhhs

15000 REM * LASER SOUND MAKER *
15005 REM *hxdkkkkktkhhthhhhhhd
15060 & T255,1

15090 FOR P = 250 TO 50 STEP - 2
15100 & TP,2

15110 NEXT P

15120 FOR P = 50 TO 250 STEP 2
15130 & TP,2

15140 NEXT P

15150 RETURN

15160 REM *A&kkiikikrkirihischrrns

15490 REM *POKE SOUND ROUTINE*

15495 REM #**%afhirhikihirshhihiris

15500 FOR I = 768 TO 833: READ P: POKE I,P: NEXT I

15510 DATA 201,84,208,15,32,177,0,32,248,230,138,72,32,183,0,201,44,240
v3,76,201,222,32,177,0,32,248,230

15520 DATA 104,134,3,134,1,133,0,170,160,1,132,2,173,48,192,136,208,4,1
98

15530 DATA 1,240,7,202,208,246,166,0,208,239,165,3,133,1,198,2,208,241,
96

15540 POKE 1013,76: POKE 1014,0: POKE 1015,3

15550 RETURN

15565 REM

15990 REM *kkkikkdhkkrthikdk

16000 REM * ERROR HANDLER *

16005 REM *hkkdkkkhkdkhrskhnk

16010 REM

16020 E = PEEK (222)

16050 IF E = 16 OR E = 163 THEN GOTO 16060
16055 END

16060 POKE 216,0: RESUME

16989 REM

16990 REM *hkkdkhkhkhkhhkhhihk

17000 REM * RANDOM NUMBER *

17001 REM * GENERATOR *

17003 REM hkxkkkkkkikikrdkn

17005 REM

17010 NUM = 1INT (3 * RND (1))

17020 RETURN

17990 REM

17995 REM **kkkkkhkdrkhhhkrdhdk

18000 REM * GENERIC PROBLEM *

18003 REM * PRINTER *

18005 REM ‘k%kekkkkkhkhrhhrhk

18006 FOR J =1 TO 3

18007 HOME : VTAB 5

18008 PRINT "ANSWER THE FOLLOWING BY ENTERING THE"
18009 PRINT : PRINT "LETTER OF THE CORRECT RESPONSE"
18010 VTAB 10

18020 PRINT PROBLEMS

18030 GOSUB 19000: REM GET ANSWER

18035 1IF RESS$ = ANSS$ THEN 18060

18040 VTAB 18: HTAB 5: PRINT "NO, THAT'S NOT CORRECT..."
18045 GOSUB 12000

18048 NEXT J

18049 VTAB 18: HTAB 1: PRINT SPC{ 40): HTAB 1
18050 PRINT "THE CORRECT ANSWER WAS : ";ANSS$
18051 TIME = 2000

18052 GOSUB 12000

18055 RETURN

18060 REM

18065 GOSUB 2300: REM COLOR BARS

18070 TEXT : HOME : PRINT CRESS (NUM)

18075 GOSUB 12000: RETURN

24

18990 REM
18995 REM TRk kdkhkkkhkhhhkhhkkhkhk

19000 REM * GET MATH RESPONSE *

19003 REM *hkkkihkhhhhhhkhhddhas

19005 VTAB 22

19010 VTAB 24: PRINT "ENTER ";: INVERSE : PRINT "LETTER";: NORMAL : PRINT
" OF CORRECT RESPONSE";

19020 GET RESS

19030 RETURN

19487 REM

19489 REM ‘*hkkdkhishhhkrhhdhdkdhs

19490 REM * ADDITION PROBLEMS *
16495 REM **kkkhkdkkkdkhkdhdkhhdhk

19500 DATA 2 + 2 = ? A, 5 C. 6
B. 2 D. 4,4 + 5 =7 A, 5
C. 8
B. 9 D. 10
19505 DATA 3 + 3 =7? A. 9 C. 7
B, 0 D. 6,4 + 7 =17 A, 11 c.
12
B. 9 D. 3
19790 bpATA D,B,D,A
19792 REM
19794 REM **tkkkkkkkkkhkhhhhkad
19796 REM * MULTICA. PROBLEMS *
19798 REM *kkkdkkkidkkhrkhhhhdkx
19800 DATA 3 X 3 = ? A. 16 C. 6 B. 9
D. 8,4 X 4=7 A, 16 C. 15 B. 8
D. 9
19805 DATA 2 X 4 = ? A, 6 C. 12 B. 8
D. 10,5 X 2 = 2 A, 8 C. 10 B. 5

D. 11
19990 DATA B,A,B,C

Chapter Two

The Bag of Tricks; or, Useful Subroutines

Beginning programmers often see some very useful features of commercial
programs that they would like to incorporate into their lesson to make
their programs run more smoothly and look more professional. Many of these
tricks are not explained very well in some of the common programming reference
manuals but are well known to advanced programmers or can be devised by them
as needed. The idea for this chapter is to provide a nmumber of common
"tricks" that can be used as is or modified to individual lesson needs.
Add to this chapter as you see other ideas and figure out how they work.
You might also wish to put these short programs on a utility disk and then

they are ready to pull in and use at any time for your lesson construction.

Desired feature:
HIT ANY KEY TO CONTINUE
(getting the student to the next section of the lesson)

Necessary command:
10 PRINT "HIT ANY KEY TO CONTINUE"
20 GET A$ (any string var. name ok)

Comment :
Any key pressed whether on purpose or accidentally will trigger the program
to go to the next part of the lesson. That's its disadvantage.

Sample program:

10 HOME

20 PRINT "WHAT IS 2 + 27"

30 VTAB 20

40 PRINT '"'PRESS ANY KEY TO SEE THE ANSWER"
50 GET B$

60 HOME

70 PRINT "4 IS THE ANSWER"

26

Desired feature:
PRESS RETURN TO CONTINUE
(getting to student to the next section of the lesson)

Necessary command:
10 INPUT "PRESS RETURN TO CONTINUE'';A$

(A$ can be any string var. name)

Comments:

Using the input command here requires the student to press the return key
to continue the lesson., The advantage here is that an accidental hit of
any key will not trigger the lesson to advance until the return key is
pressed.

Sample program:
10 HOME :
20 PRINT "WHAT IS 2 + 27"
30 VTAB 20
40 INPUT "'PRESS RETURN TO SEE THE ANSWER'; B$’
50 HOME
60 PRINT "4 IS THE ANSWER"

27

Desired feature:
PRESS SPACE BAR TQO CONTINUE
{getting the student to the next section of the lesson)

Necessary command:
10 PRINT "PRESS SPACE BAR TO CONTINUE"
20 GET A$
30 IF A$ = CHR$(32) THEN S0
40 GOTO 20
50 REM REST OF PROGRAM HERE

Comment :

CHR$(32) is the Ascii code for the space bar. Any specific character on
the keyboard may be used by using the Ascii code for that character (see
next page for a list of Ascii codes).

Sample program:
10 HOME
20 PRINT "WHAT IS 2+2°?"
30 VTAB 20
40 PRINT "PRESS SPACE BAR TO SEE ANSWER"
S50 GET z$
60 IF Z§ = CHR$(32) THEN 80
70 GOTO 50
80 HOME
90 PRINT "4 IS THE ANSWER™

28

ASCII Character Codes

29

ASCII Display Screen Keystroke ASCII | Display Screen Keystroke
Code Character Code Character
0 Ctrl-@ 48 3 [
1 Ctrl-A 49 1 1
2 Ctrl-B 50 2 2
3 Ctri-C 51 3 3
4 Ctrl-D 52 4 4
5 Ctrl-E 53 5 5
6 Ctrl-F 54 6 6
7 (bell) Ctrl-G 55 7 7
8 (backspace) Ctrl-H or <« 56 8 8
9 Ctrl-I 57 9 9
10 (1inefeed) Ctrl-J 58 : :
11 Ctrl-K 59 ; :
12 Ctrl-L 60 < <
13 (carriage return) | Ctrl-M 61 = =
14 Ctrl-N 62 2 >
15 Ctrl-0 63 s R
16 Ctrl-P 64 e @
17 Ctri-Q 65 A A
18 Ctrl-R 66 B B
19 Ctrl-S 67 C C
20 Ctrl-T 68 D D
21 (forward space) Ctrl-U or — 69 E E
22 Ctrl-v 70 F F
23 Ctrl-W 71 G G
24 (cancel line) Ctrl-X 72 H H
25 Ctrl-Y 73 I I
26 Ctril-Z 74 J J
27 Esc 75 K K
28 n.a. 76 L L
29 Ctrl-Shift-M 77 M M
30 Ctrl- ~ 78 N N
31 n.a. 79 0 0
32 space space bar 80 p P
33 I I 81 Q Q
34 1] " 82 R R
35 # # 83 S S
36 $ $ 84 T T
37 % % 85 U U
38 & & 86 vV Vv
39 ' ! 87 W W
40 { { 88 X X
41)) 89 Y Y
42 * * 90 Z Z
43 + + 91 L n.a.
44 , , 92 N n.a.
45 I- - 93 Shift-M
46 . . 94 .
47 / / 95 n.a.
n.a. = not available on the Apple II keyboard.

30

Desired feature: }
have a menu and allow student a choice
Necessary command:
10 ON A GOTO line#,line#,line#, etc.
or
10 ON A GOSUB line#,line#,line#,etc.

Comment:

The numbers in your menu (for example, 1,2,3) are used by the computer to

select the next line to execute. If you type in a 1, the computer goes to the
first line number listed after the GOTO or GOSUB. If you type a 2, the computer
goes to the second line number listed after the GOTO or GOSUB, Using this
command eliminates a series of IF THEN statements such as: IF A=1 THEN GOSUB
1000: IF A=2 THEN GOSUB 2000...etc.

Sample program:
10 HOME
20 PRINT "WHICH WOULD YOU LIKE?"
30 PRINT 1. PRINT A LIST"
40 PRINT "2, PRINT MAILING LABELS"
50 PRINT "'3. ADD TO THE LIST"
60 PRINT "4, DELETE FROM THE LIST"
70 PRINT "5, END"
80 VTAB 20
90 INPUT "PLEASE ENTER THE NUMBER'";A
100 ON A GOTO 1000,1500,2000,2500,3000
110 GOTO 80
1000 PRINT "HERE IS YOUR LIST': GOTO 10
1300 PRINT "'HERE ARE YOUR MAILING LABELS'"': GOTO 10
2000 PRINT "YOU CAN NOW ADD TO THE LIST"': GOTO 10
2500 PRINT "'YOU CAN NOW DELETE FROM THE LIST': GOTO 10
3000 PRINT "THIS IS THE END OF THE PROGRAM"
3100 END

31

Desired feature:
Run one program from within another (where you don't want or can't
merge the two)

Necessary commands:
10 D§ = CHR$ (4) : REM STORE CIRL-D IN D$
20 PRINT D$; "RUN program name'’

Comments:

The "program name' above is the name of the program you wish to run from another
program. Both programs must be on the same diskette or it could be on another
diskette in drive 2 (then say "RUN program name, D2'". Remember, if you are
going to run one program from another, the first program will be erased from
memory and the second one loaded in. This means that to get back to the first
program or another one, the second program must also contain the necessary
commands listed above.

All values in the first program are lost when the second program is run. For
example, if you asked the student's name in the first program, it would not
carry over to the second program nor would it be there when you return to the
first program. Another disadvantage is that this process will be slow because
each program has loading time.

The advantage of running one program from another is that the two programs
might be in different languages or could be too big (too many K) to store as
a single program.

32
Desired feature:

Prompt student for response and print error messages for inappropriate
response.

Necessary command:
10 IMPUT "ENTER ITEM NUMBER"; P
20 IF P 5 and P7 0 THEN 60
30 MSG$ = "MUST BE 1-5"
40 GOSUB 1000: REM ERROR MESSAGE PRINTER
; 50 GO TO 10
i 60 GOSUB 2000: REM CLEAR ERROR MESSAGE LINE
i 70 REM PROGRAM SEGMENTS HERE
999 GO TO 10
& 1000 VTAB 20
£ 1010 PRINT MSG$
: 1020 RETIRN
] 2000 VTAB 20
it 2010 PRINT SPC(40)
i 2020 RETURN

Comments:

The error message must stay on the screen long enough to be read. If you just
printed the message and then cleared the screen, the student would hear the

.beep but would never see the message! Therefore, we add a subroutine (GOSUB 2000)
to clear the error message line after a correct response.

MSGTHERE is simply a variable used to see if an error message is on the screen.
SAMPLE:

10 REM USING AN ERROR MESSAGE SUBROUTINE
15 NOISE$ = CHR$(7) : REM A BEEP STORED IN NOISE$

20 HOME
30 VTABl : REM KEEP MENU FROM MOVING DOWN SCREEN
40 PRINT" MENU "

50 PRINT' (1) GO TO Z00™

60 PRINT" (2) TO TO 300:

70 PRINT" (3) END"

80 PRINT: PRINT"'ENTER NUMBER OF ACTION DESIRED"
90 GET C
100 ON C @ TO 200,300,400
110 MSG$ = " NUMBER MUST BE 1,2,o0r3"
120 GOSUB 1000

130 GO TO 30

200 IF MSGTHERE THEN GOSUB 2000

210 REM PUT PROGRAM SECTION HERE

220 MSG$ - '"™ADE IT TO 200"

230 GOSUB 1000

240 GO TO 30

300 IF MSGTHERE THEN GOSUB 2000

310 REM PUT PROGRAM SEGMENT HERE

320 MSG$ = "MADE IT TO 300"
330 GOSUB 1000
340 GO TO 30
400 END
1000 PRINT NOISE$
1010 VTAB 20
1020 PRINT MSG$
1030 MSGTHERE = 1
1040 RETURN
2000 VTAB 20
2010 PRINT SPC(40)
2020 MSGTHERE = 0
2030 RETURN

33

34
Desired feature:

Use of borders around titles or to highlight text

Program: (written in Integer BASIC)} BORDERS

10 CALL -936

15 S= 16336

50 GOSUB 400

100 PRINT "THIS IS A PROGRAM TO PRINT"

150 GOSUB 500

250 PRINT ""BORDERS AROUND SIGNIFICANT TEXT:
300 GOSUB 500

350 PRINT '"THAT YOU MAY WANT TO HIGH LIGHI"
360 GOTO 700

370 REM

375 REM **&ikiiakidirridkiikrhk

380 REM ** TAB DOWN AND OVER *#*
385 REM HRARKREARARRARAARERAARR
388 REM

400 VTAB 15: TAB 5: RETURN

473 REM
475 REM BARRRKRRRIRKAALRARERRAR

480 REM ** ADD SPACE § TAB OVER ®¥*#%

4185 REM RRRRARAKAARARARL L AARRRIRARRRL

500 PRINT : TAB 5: RETURN
580 REM
600 REM dehhkkhkhhiibhhihhd

620 REM ** PRINT STARS *#**

630 REM dhhhhdhhhki it hihd

700 REM

720 VIAB 13

730 TAB 2: PRINT 1k k R R X R R kK K %k E k k% % % % % & xn
750 SOUND= PEEK (S)- PEEK (S)- PEEK(S)

800 REM

845 REM AERRRRZRAREEARERAT AR R AR RRR

850 REM ** PRINT THE RIGHT SIDE #**
855 REM RhEARAARAERERRE AR AR kR R Rk
860 FOR J=1 TO 9

870 VIAB 12+J: TAB 40: PRINT '"™*"

880 FOR I-1 TO 500: NEXT I

885 IF J=9 THEN GOTO 900

890 SOUND= PEEK (S)- PEEK (S)- PEEK(S)
900 NEXT J

1000 REM

1015 REM RbkrkhrhkkhkkhtrhirrRAohkkthd

1020 REM ** PRINT THE LEFT SIDE *#*#*
1025 REM #*&iikdkkkrariisikikthhhhiis
1050 FOR J=1 to 9

1060 TAB 2

1065 VTAB 12+J: PRINT '"*"

1069 FOR I=1 TO 500: NEXT I

1070 SOUND= PEEK (S)- PEEK (S)- PEEK(S)
1080 NEXT J

2000 REM

2005 REM

2008 REM
2010 REM
2015 REM
2020 REM
2050 VTAB
5000 END

bR s e T T T T T Y

*% PRINT BOTTOM LINE ##
RRERRRERRRKI KRR ARk % K& A

21:TAB3:PRINT"*******************

35

