

MODULAR QOMPUTER LESSON DESIGN
APPLE VERSION

SEQOND EDITION

by
Paul M. Roper

&

David V. Loertscher

Hi Willow Research and Publishing

1985

c. 1985 by Paul M. Roper and David V. Loertscher

Hi Willow Research and Publishing
P.0. Box 1801
Fayetteville, Arkansas 72702-1801

ISBN: 0-931510-12-0

TABLE OF CONTENTS

Introductionttoilolcoll..0.l..lo.n..lc.i..l.o..t-tn--o---l‘t.llcncI--

Chapter 1: The Educational Computer LeSSON...cccectcsssacsacaccsssas

Biblimrapt]y..n.il..l.nl.l..ll.l..ooolollool.l....ll.oooolol.ot.

Glapter 2: Mular Cmpl—]ter Lesson msign.....I'....l.....'...ll.l..

- mple ml'.‘..‘.ll.l...l.l.-l.lllI..I..lI.ll.l.'l.ll.l.'I.ll-
Sample program: APPle DeMO..cssessssscsossrsassancnnssoascasssns

Chapter 3: Lesson Features; or Useful SubroutineS..... caceccecssces

Feature #1: Press Any Key to Continue...cveeeeecerncccecncnnss
Feature #2: Press Return to ContinU€.ccveceseessesssnsconsnsne
Feature #3: Press space Bar to Continue....cceeecicennsnsacnses
ASCII Character CodeS..cvssasvasnssesosusssssscsscscsnassssnesss
Feature #4: 'To Have Question Marks or No Question Marks;

To Bave a Cursor or MO CULSOr.icvsaassssssansancnns
Feature #5: End the Program When "END" is Entered; Provide

Hints When "H" is Entered...eecccccsscscessenssnss
Feature #6: Error Trapping For Certain Numeric KeyS.....c.....
Feature #7: Present a Menu and Allow the Student to

Select an OptiON..cieesssescacsasceesssosssacnasns
Feature #8: Pace Text Or GrapPhiCS.eceenesscsssrrasscnasacssses
Feature #9: One Part of the Text Screen Remains Constant

¥hile Another Part ChangeS.ceescvsssscassccosssses
Feature #10: Keep Score During a Quiz and Print Out the

Number Right and % Rightieesesscsccccssatassosncas
Feature #11: To Page Back and Forth Through Text With the

Escape Key Used to Get Out of the Program.........
Feature #12: To Use Inverse to Create Borders or Boxes

Around Text; To Inverse a Single Word Within

a Sentence — All on the Text SCreeN..ivescscscces
Feature #13: Select a Reinforcing Graphic or Message
v at RANAOM. ccevvresasassnsssscosessasnsnssansasannns

G]apter 4: Progra]fmj.ng Tips-...uu..-cl-.t!.l-n-.--t.c...u--.--noll‘.

Tip #1: Easy Editing...ceecescsccerecccacntncnarnccncstsncances
Tip #2: Making Your Programs Easier to Read.eovscvassonasscnne
Tip #3: Numbering SubroutineS.....cccsevscccccceecracccanacces
Tip #4: A Caution Concerning the Text Page....c..ceeencassssces
Tip #5: Printing on the HIRES and LORES Text WindowS..cesecses
Tip #6: Running a Lesson When the Disk is Booted.ieseccvssncces

- Tip #7: A Simple Protection SCheMe...civesseeecscens tessesnese
$ Tip #8: Using Quotation Marks on the Text Screen...... cocevena
1 Tip #9: Turning the Printer On and Off While a Program
- is Running...... vesssa Seessrenncsassnasssansscan ceevs

Tip #10: Breaking Up Programs into Smaller SegmentS......cse.. .
Tip #11: Memory Maps and MOVIRg MEMOIY.eseeseocssssrvaccsncanes
Tip #12: Determining Space Left on the Disk and Free
MEMOLY s evsesesssoncencsssassnsassnscnssassncncssenss .o
Tip #13: Using a Word Processor to Edit Your Program.....cece...
TIP #14: Clearing the Screen in LORES GraphiCS.eeseecesssccsecs
Chapter 5: Graphics and TeXt..sveeeeesessccnsens tetrersssssscscrasas
Tip #1: LORES Graphic and Text Screen Grids...cicesevececsaess
Tip #2: Finding Designs for LORES GraphiCS...cceecesscscsavane
Tip #3: Debugging GraphiCS...vecrcescrcsssncscssssnsscsnnnvnns
Tip #4: Animation on the LORES SCY€€N..sseesesssescsvsascasane
Tip #5: Using HIRES GraphiCS..eeecsesssescssesssssctasscrasses
Tip #6: Instant GraphiCsS...eeesrisresceseessctnctncscsssesnes
Tip #7: Drawing on the HIRES SCIE€N..ctccvencvccsnenssnssasass

Chapter 6: Simplified Guides t0 WOrd ProCesSSOrS..cceessesscsssacsnsas
word Processing With Apple IIewriter.liilt.I.'l.l..l..l.l..l...
Beginner's Guide to Bank Street Writer — Apple Version..eceeeeces

5-10
5-10
5-11
5-14
5-19
5-20

INTRODUCTION

Many educators, whether in formal, informal, or corporate education, are
becoming computer literate and know the rudiments of programming. These persons
know the functions of computer commands like LOAD, LIST, PRINT...etc. What they
may not know is how to use these commands to create a lesson, i.e., they have
the tools but do not know how to proceed systematically. The authors have seen
a number of beginners try to write lessons. They struggle - not because they
don't know how to get the computer to respond, but because they get bogged down
in hundreds of line numbers and lose their place. They may have used
flowcharting techniques but, like other programmers, desire a better way of
structuring their programs.

This book provides a simple structure for a computerized lesson. It breaks
a large task or lesson down into a number of pieces, each of which can be
programmed or coded separately and then pieced together intc a whole. It is
something like putting a puzzle or a patchwork quilt together.

Chapter one discusses the prerequisites to writing quality computer
lessons. Chapter two teaches the modular technique with a detailed example to
follow. Chapter three provides a number of techniques that can be used in
lessons to make them more professional. Chapter four provides a number of
progranming tips not readily available in the literature. Chapter five provides
useful graphic tools and chapter six introduces Apple Writer and Bank Street
Writer to the novice.

There are a number of commercially available authoring programs such as
Genius, Super Apple Pilot, Blocks, etc. All these have their strong points.

They also have limitations. This book presents an alternative to those

authoring systems and provides the creative teacher and programmer with another
way of building lessons for the computer using BASIC. Although the text has
been written with Applesoft BASIC in mind, the technique taught here is useful
no matter what computer or computer language is employed.

This book will not make you a computer programmer nor does it stress the
internal functioning of the computer, but if you already know the rudiments of
programming, it will help you improve your methods. It is very easy to spend
countless hours at the computer terminal writing code and debugging it. If you
will follow the suggestions presented here for structuring your program,
precious hours can be saved.

The book has been authored by a systems analyst and an educator. Wwhile the
systems analyst has been interested in the finer points of the computer’'s
capacitites, the educator has been interested in translating computerese into
the practical world of education. The educator in the field who can use this
book and understand the structure which it recommends for computer programs is
certainly prepared to work with a professional programmer in the creation of
cowm:ercial quality educational programs. Both the educator and the computer
programmer must have some common ground — some basis of communication.
Hopefully, the educator who uses this book will be drawn toward the world of
computer programming and structure. The programmer who understands the
techniques presented here should be drawn toward the needs in education.

The second edition of the work has been expanded and corrected. An
addition was made to the modular design process and chapters were added on
graphics and word processing. In addition, many new hints and tips have been

added. The program Apple Demo is available from the publisher on disk for

$5.00.

]

I A I 3y 53 IR ma s IE

CHAPTER ONE
THE EDUCATIONAL COMPUTER LESSON

Fvery time a new technoclogy is created that has potential for educational
use, there is a great deal of stress because there is usually a lack of software
to accompany the new medium. Usually, very few corporations have extensive
staffs working on new software for a new medium, and often most of the
developmental work is handled with government grants. Such is the state of the
art with computer technology. There is a wealth of hardware on the market but
software is still scarce in many subject areas.

Using computers as a teaching technology is not really new but using
microcomputers to teach is new., Today, there is a concerted effort to create
software for students of all ages and for all curricula. Commercial development
seems agonizingly slow, and often a commercial product will not meet a local
need. At some period in time, there should be an ample amount of useful
computer material available commercially, but at this point, there is not.

Should the local teacher create computer programs for students when these
materials are not available commercially? Many teachers have learned to create
their own transparencies, slides, tape recordings, games, and other media with
varying success. Should they attempt computerized lesson creation? The answer

%
is neither a straight yes nor no.

A number of authors suggest that teachers will never have the time or the
talent needed to create effective and qualitative computer course materials.
while this generalization may be true for the teaching force as a whole, there

are a number of factors to consider which provide encouragement for teachers who

28 3N 3N B I O O I3 W B

wish to create their own computer media.

Teachers who are knowledgeable of computer programming and operation are in
a better position to critique the commercial products created for their
classrooms. They are better critics because they have some notion of the
potential of the computer, and of programming principles that differentiate
between good programming and bad. They know the graphic and computational
capabilities of the machines and whether these capabilities are being utilized
by a particular program. It is in this sense that knowledge of the technology
would contribute to the proper use and selection of computer materials in
teaching.

Teachers who have some knowledge of computer programming and operation can
also take advantage of programs which can be altered for particular
applications. For example, there are a number of programs available which allow
the teacher to insert daily spelling lists, terms and definitions, formulas, or
problems. If a teacher understands programming, this type of lesson can fit a
local need directly designed by the creator.

There are a number of local networks developing in which members share
computer programs. For teachers in the network who have programming skills, a
number of free programs can be acquired, modified, and used to advantage.
Resides the trading partnerships, numerous magazines display programs which can
be typed into the computer for use. These can also be medified and adjusted for
locak use by the teacher.

Another possibility for teachers is to collect bits and pieces of programs
which have useful functions and store them on a diskette often called a utility
disk. These short programs can then be called up and combined with other bits

and pieces to form a useful larger program. For example, an alphabetical s ort

program, some graphic tricks, short games that can be inserted in another
program as a reward, a2 program to provide varying positive reinforcements, and
many other sort programs can be collected. If the teacher has such a bank of
programs available, then larger programs that fit local needs can be constructed
without too much time and effort. In fact, students may be involved in the
programming effort to produce their own useful lessons.

This book provides a number of techniques which can be used by the teacher
as parts of computerized lessons. But more importantly, the book provides a
method of linking parts of a program or modules together into an organized
whole. This technique provides structure. It brings a manageable dimension to
programming.

But before programming can begin, there are other prerequisites which the

teacher must bring to the task of creating a computerized lesson.

The role of experience.

Perhaps the best preparation for creating computerized lessons for a
specific group of students is to have experience teaching that group. 2n
elementary school teacher who knows how children think, how they respond to
instruction, and how they are motivated is prepared to plan a computerized
lesson. Some of the best commercial products to date have been created by
teachers who have teamed with programmers to create software. Much of the
software available from MECC (The Minnesota Educational Computing Consortium)
has been produced in this manner.

The MECC staff has worked two ways. First, a teacher may submit an idea to
the MECC staff which assigns a programmer to translate that concept into a

computerized lesson. Secondly, the teacher may submit an already-programmed

1-4

lesson which the MECC staff "cleans up" and prepares for state and national
distribution. Both systems have worked very well in producing a variety of
quality software for many different curricular areas.

There are sare fundamental questions that experienced teachers
automatically ask prior to conmstructing any lesson. These questions must be
asked in the same detail as computerized lessons are designed.

The questions include:
| 1. what types of topics and subject areas could be computerized?

2. What topics will fit into the curriculum at a certain grade

level?

3. What is the normal reading level of the students who will use

this lesson?

4. What types of topics interest students?

5. How should a lesson be structured for a student at a certain

ability level?

6. What types of concepts can the students understand?

7. Do I know enough about the subject of the lesson and have

enough reference materials to provide sound content?

8. What types of unmotivated or mischievous behavior should

be anticipated in structuring a lesson for the student?

9. How long is the attention span of the student?

If the above questions cannot be answered automatically, then extra
preparation time will be required. A good technique is to test a program idea

with several teachers before you begin the design process.

Usi insi tioral desi el.
There are many models which have been developed to provide a systematic

nethod of designing instructional modules. A number of books dealing with

instructional design are listed at the end of this chapter. Wwhile instructional

design models differ, there are a few elements common to the process that will

be reviewed here. These important steps include:

ll

2.

Analyze the audience. In this step, a thorough analysis of
the types of students who will be using the lesson is

performed. Who are they? What are their backgrounds? What
are their abilities?

Create measurable objectives. Decide exactly what students
will be required to learn. Write the objectives specifically
enough so that you will know when students have mastered the
intended content.

Define what content will be covered. Xnow what segment of a
topic can be comfortably covered in a computerized lesson. How
much will be too much? Too little?

Know what media will be used. Will the concept be taught
totally by computer? What other media will be used? Will the
computerized lesson be a foundation for the full lesson or will it
be supplemental?

Create the computerized lesson. Use the modular technique
described in this book. Be sure to create a set of clear

instructions (documentation) for the teacher and the student.

6. Pilot test the lesson. Try out the computerized lesson on the
students or classes for which it was designed. Is the lesson
as successful as you had hoped? What changes need to be made?
Is the documentation adequate?

7. Use the lesson. Put the lesson into use by the group for
which it was intended.

8. Evaluate the result.

N Does the program live up to your expectations?

Revision and updating may be needed from time to time.

Until the Apple computer was developed in 1978, using computerized lessons
was very expensive. Now there are many microcomputers available whose costs are
not prohibitive, These computers all have differing characteristics which must
be considered by the instructional designer. Many commercial companies are
creating numerous versions of their lessons so they can be run on the various
brands of microcomputers.

Should you write a lesson with multiple versions in mind? The answer to
that question will depend on your intentions. If you plan to market your
software widely, then you would be wise to know the similarities and differences
among the various machines. You can design with conversion to other programming
languages in mind. For example, if color graphics are essential to the
understanding of a concept, you will not be able to have a TRS80 Model III
version available, but you could have a TRS80 color computer version. If the
graphics are simple line drawings, then they can be converted rather easily for

the various computers, but complex graphics make conversions much more

difficult.

But should we always design for the lowest common denominator

characteristics of the computer? If you avoid some of the capabilities of your

machine that other computers don't have, you will not be using the full teaching

potential of your computer. This can make your lessons much less powerful than

they &re capable of being.

What are the characteristics of computers which are valuable in

education? Which of these characteristics are common to other media and which

are specific only to computers? Computers have a rnumber of characteristics

which are conmon to other media:

1.

4,

Printed information may be presented (book, computers,
filmstrips).

Color graphics (pictures and animation) or line drawings may be
used (film media, computers).

Some sound is available (audio media, computers, most film
media) .

Text and graphics can be mixed in a presentation (most film
media, computers).

Linear lesson design, i.e., all students progress through the

lesson in the same sequence (textbooks, all film media,

computers) .

Computers also have characteristics which are unique. These

include;

1.

Immediate and tireless feedback (computers can

be interactive).

2. The potential to analyze student responses at any point in the

lesson and tailor instruction accordingly (branching).

3. The power to solve complex equations or formulas instantly,

making simulation of the real world possible.
4. The power to store student responses instantly for access
by the instructor at any time.

5. The power to generate problems on demand and at varying degrees

of difficulty - as few or as many as needed,

6. The power to sort through material, text, bibliographies

at a fantastic rate of speed for desired items.

7. The unique potential to teach logical thinking through

debugging skills.

It is not wise to try to design a computerized lesson that can
be taught better in another medium and in a different way. Using the computer
to instruct just because it is available or is the fashionable way to be
teaching, is no reason to design for it. A better plan would be to choose
computer instruction when at least one of its characteristics would be
beneficial in teaching a given concept If, for example, a student would benefit
from numerous math problems being presented with immediate feedback (and with
more patience and long suffering than a human is usually capable of delivering),
then a computer becomes a proper medium for consideration.

Yt therefore becomes a matter of careful choice of what to computerize
as well as devising a plan to do it well., Often, a task may be done more
interestingly in another medium. If that is the case, use other media. There
are plenty of lessons which would benefit from computer characteristics without

wasting time programming lessons that are better taught by other methods.

BIBLICGRAPHY

Bruce, Phillip, and Pederson, Sam M.,
ment. Proiject. New York: John Wiley, 1982.

Designing Instructional Computing Materials. Minneapolis, Minn.:
MECC, 1981.

Dick, Walter, and Carey, Lou, The Systematic Design of Instruction.

Glenview, Ill.: Scott Foreseman, 1978.

Gagne, Robert M., and Briggs, Leslie J., Principles of
Instructiopal Design. New York: Holt, 1979,

Peters, Harold J., and Johnson, James W., Author's Guide.
Iowa City, Iowa: Conduit, 1978,

Russell, James D., The Andio-Tutorial System. Englewood
Cliffs, N.J.: Educational Technology Publicaticns, 1978.

Minneapolis, Minn.: MECC, 1981.

.
A

CHAPTER TWO

MODULAR COMPUTER LESSON DESIGN

Modular computer lesson design is a systematic way of creating computerized
lessons. Its concept is to divide a programming task down into small segments
which can be programmed independently and then pieced together to create an
educational lesson. It is similar to the cut and paste technique in graphic
arts where bits and pieces of this and that are combined to create a pleasing
handout, poster, etc. Each piece (module) of the computerized lesson can stand
alone, is programmed separately, and will run independently of the other
modules.

Visually, a computerized lesson might have the following modules:

[I
| Control |
. | Module |
| !
!
!
| I
| | I
| Program | |
| Module (s) | i
! I I
I !
I [
| !
! [
! | I
| sub I |
| Module (s} | [I
| I | Utility |
| Module (s) |
[

The components of each of the modules in the model might include:

1.

Control module:

a.
bt

C.

Document (explain) what the program does.
Open any files needed.

Initialize any variables used.

Dimension any arrays used.

Present the main menu (if one is used).

Terminate the program with an END statement.

Program modules(s) (are subroutines),

Present actual lesson content.
Text and graphics used only once in the program go here. Text or
graphics that are used over and over should be in a utility

module to be called as needed.

Sub~-modules (none, one, or more) (are subroutines).

Q.

If a program module is too large to be easily maintained or is found
to be performing many unrelated tasks, it can be broken down into

smaller segments.

Utility modules(s) (are subroutines).

a.

b.

Present title graphic or other introductory material.
Contain any graphics called more than once in the lesson.
Store any sound routines called more than once.

Sort data.

e. Provide time delays.

f. Control forward or backward paging instructions.

g. Contain keybcard input controls.

h., Allow error trapping.

i. Contain any other utilities used.

The modularized picture of a lesson can be simple or complex depending on

the length and detail of the lesson.

For example, a short lesson might only

have one program module like the drawing on the left or it might have numerous

modules like the drawing on the right.

[!
| Program |
[Module |

[|
| Program |
| Module |
O

i
Sub |
Module |

!

I

I
I
l
|

|
|
Dtility |
1
!

It should be clear from the preceeding discussion, that the design and
programming of a computerized lesson is accomplished in chunks or modules which
are independent entities that can then be joined together in a single program.

Knowing what the overall design will look like, the task can begin.

The first step of modular computer lesson design is to define the lesson
problem. Here, the steps of instructional design discussed in chapter one
should be taken into account. This includes an analysis of the intended
audience, the objectives of the lesson, the content to be covered, and the
strategy that will be employed. The computerized lesson can be independent of
other learning materials or it can be one component in a multi-media unit of
instrlflction.

Sample Lesson Problem Development

Title of sample Jesson: Apple Demo

Audience: a student who has mastered the fundamental commands of

a programming language and is ready to use those skills to write

computerized tutorials.

Ohiectives:

1. The student will be able to use the sample lesson as a model
to follow in the construction of a computerized lesson.

2. 'The program used in the example will be simple enough that
students will be able to follow through the various modules

without becoming confused.

3. Enough programming techniques will be demcnstrated in the
sample lesson so that students can copy, select, add to,
and delete ideas as they program their own lessons.

4, A secondary objective is to create a lesson which demonstrates

some of the features of the Apple computer.

The next step in modular design is to break down the main problem into
smaller problems. FEach of the features of the desired program should be listed.
The features are then studied and prioritized according to any constraints that
might be present. Constraints might include time, money, personnel and
programming expertise. These constraints may limit the length, the content,
and the complexity of the lesson. In our sample lesson, we have listed all of
the features that we originally wanted in our program and have starred those
features that we actually progranmmed. Our main constraint was time. We also
realized that the program would be too long if it contained everything we
wanted. We finally decided that we had been too ambitious in our original plan.

Sample Lesson Detailed Features
Progemming features to demonstrate:

1. use of a menu*

2. use of subroutines*

3. documentation within a program*

4. control of input from the keyboard*

5. control of program flow*

6. communication with the user*

7. testing responses from the user*

8. handling errors#*

9. management of computer lessons

Apple features to demonstrate in the lesson:
1. computers can count*
2. computers can compute and compare*
3. computers can do graphics*
4. computers can create sound
5. tutorial type computer lessons*
6. simulation type computer lessons

7. gaming type computer lessons
8. drill type computer lessons*

*features chosen for final product

The next step is to create a VIOC (visual table of contents) of the lesson
features. This will be comparable to creating a table of contents for a book
which will list module titles (chapter titles) and will give possible beginning
program line numbers of each module (page numbers for the chapters). The
beginning numbers should be added only if they can be easily forecast in
advance, Sub—parts of modules (parts of a book chapter) are drawn underneath
main modules. Any subroutines referenced or "called” by a module are also
listed under that module.

The VTOC presents the programmer with a visual map of the program flow.
This map is much easier to follow than a flowchart due to its simplicity. The
detail of a flowchart, with all of its program logic, is often a maze of
instructions. By contrast, the VIOC presents a clear picture of the program as

a whole rather than detailed code.

A

2-7

Using the VTOC as a guide, pieces or parts of the program can be created and
debugged separately before the whole program is put together. Such an approach
is much less tiring than trying to develop the program logic for the entire
program. Program bugs (errors) are easier to find in small programs than in
large progrars. FEach module or piece can be tested and modified before it
becomes a p..t of the whole. Programming is always begun after the VIOC has
been created -~ never the other way around. It is much too easy to get lost in
pages of code. The VIOC will provide an index to the entire project.

‘The VIOC for the sample program follows (see p. 2-8). Note that we selected
our main modules from the features that we had outlined. Some of our featues
were to be exhibited in the programming style itself, so they did not become a
part of the VIOC. We estimated that our line numbers for each main module would
start at 1000,2000...etc. As it turned out, we could have used a little more
space in some of the modules. Perhaps 1000,3000,5000, etc. would have been a
better choice. This can easily be changed as the programing progresses, but we
have left our program in its original form to demonstrate this and other
problems that can be encountered. When we first drew our VIOC, we did not know
all of the utility modules that we would be using., We decided to start all the
utilities at 10,000 and keep the start of each new utility at an interval of
1000 or 500 or same other easily remembered number. We kept our VIOC handy at
all times with its list of utilities so that we could incorporate the utility as
a subroutine into any module we were building.

Be sure that the VTOC lists every subroutine that is called by the_ program,
At the planning stage, the programmer can't forecast every detail of the program
50 thfa VIOC may only include the major sections.

As thinking and planning progress, the VIOC will became more detailed,
Ideally, however, you should make the VIOC as complete as possible before you

begin programming. At same point, the VIOC will be a complete table of contents

to the program, like our example.

10
Control @0 0 ,
Module *
1000 2000 3000 4000
| Count | @. Graphics @' Compute § 0 ‘Drill
Module Module Compare Module
| | | Module —
1300 400 100 2200 300 3100 200 4100 4200
How high In what Shapes Full Color + -X/ Compare 244 Multiply
and low increments screen bars 2 values|

@ @ @

&

(9

oo
e}
(=]

10000 Input menu choice

@

@ 11000 Scrolling routine
s

S

i 12000 Delay routine

13000 Press space bar

14000 Color generator

0 15000 Laser sound maker
15500 Poke sound routine
17000 Random number generator
18000 Generic problem printer
19000 Get math response

V T OC (VISUAL TABLE OF CONTENTS) 19500 Addition problems
19800 Multiplication problems

elele
()

&

=]
oo
()

After you have created the VIOC, you are ready to program each of the
modules as a separate piece and then join them together to form an entire
progr:am. Many programmers do very detailed planning of each module by using a
technique called flow charting. We recommend that before you try to flowchart a
module, you should do same intermediate planning. If you were writing a
research paper, you would outline a section of the paper in a fairly detailed
manner so that as you write, your thoughts would be organized. You may also
outline fairly detailed steps that are needed to create a program module,

Here is a sample outline of the control module for the Apple Demo program:

Control Module
1. Program title in REM statements.
2, Describe the program in REM statements.
3. Initialize the question and answer variables for the drill module.
4. Present the main menu.
5. Accept student input and check for out-of-range responses. If out of
range, reprint the menu.
6. COSUB to the appropriate student choice or end if the student requests it.
7. End the program.

As in an outline for a research paper, your outline may grow and develop as
you actually write the paper. Our item three above, for example, might not be
added until we actually begin to program the drill module, At that point, we
would realize that we need to initialize our variables and so decide that the

best place to do this is back in the control module. We add that feature to the

control module (Thank heavens we left space between our line numbers).

After your outline, you are now ready to flow chart a piece of the module
if that process will help you. Flow charting will not always be necessary as

you gain experice in programming, but it is rarely a waste of time.

The actual programming task is now ready to begin, Each module on the VIOC
should be programmed or coded separately. The programmer begins at the top (the
control module) and continues in order until the last module is completed. This
is called top-down programming. Within each module, top-down programming is
done., This means that there should be a minimum of jumping around through the
module (few GOTO commands). Top—down progranming makes it easy to follow
through the code in order to find errors and follow the logic.

Fach module is an independent piece of the program and should be written and
tested before going on to the next module, This can be done by just typing in
RUN starting line # of the module or GOSUB starting line # of the
Ssubroutine.

Often, programs contain a menu in the control module (example: Which
lesson would you like? 1. Addition; 2. Subtraction; 3. Multiplication;

4. Division; 5. OQuit). In this case, get the menu working first, then as each
of the modules is created, it is tested and then hooked into the program so that
the menu calls it.

It is important to find and clean up problems early in the progra:ﬁ rather
than having them stack up. Solving one problem early will often eliminate later
problems. Psychologically, this helps create many small successes rather than
building a mountainous number of problems to tackle all at one time. One nice

thing about programming in modules is that several persons can be assigned to

2-11

writé;various modules of the program. Also, some of the modules may already be
available from other programs that have been written or can be borrowed from
other programmers. The idea here is to keep a library of utilities and other
useful programs that can be pulled into any lesson being written. This could be
called a cut and paste methodology ~ get the medules you need anywhere you can
get them and put them together.

The Apple System Master diskette has a very useful utility program entitled
RENUMBER. Using this program, it is very easy to merge one sequence of line
numbers into another, If the two programs to be merged have duplicate line
nunbers, the RENUMBER program can supply a new sequence of line numbers so that
the two programs can merge easily.

If you have a library of useful programs or ultilities handy, it is very
important that each of these have descriptive titles as well as clear
descriptions of exactly what they do. A good catalog of what you have is very
helpful. This can even be a file on the diskette that simply contains a list of
all your subroutines.

Be sure to keep the VIOC - even after the program is written. It will
always be useful as documentation for that program.

In the following pages, the actual program "Apple Demo" is printed out. The
program is listed on the left of the page and comments have been added in the

right hand column to help the reader follow the logic.

bt o = b e WD 00~ O UT LD R
N U b G B o

B
S W o~

50

100
110
120
130
135
325
490
500
505
510
550
560
570
580
590
600
610
630
640
650
660

!

at that point in the program;
VIOC also provides this information.

REM *kkkkkkkkkdkkhkdk

REM *CONTROL MODULE*
REM *®%kkkkkkikkkikkdk
REM APPLE DEMO

REM BY MIKE ROPER
REM C. 1982

REM

REM

2-12

The control module begins.

D$ = CHRS (4): PRINT DS;"OPEN TEXT DEMO": PRINT DS;"WRITE TEXT DEMO": POKE
33,30: LIST : PRINT D$;"CLOSE TEXT DEMO": TEXT : END

REM THIS PROGRAM HAS TWO
REM PURPOSES:

REM THE FIRST IS TO
REM SHOW HOW A PROGRAM

- REM IS PUT IN MODULAR FORM,

REM THE SECOND IS TO

REM SHOW SOME OF THE

REM FEATURES OF THE APPLE

REM QOOMPUTER

REM

REM

REM

BEEPS = CHR$ (7): REM STORE BEEP
GOSUB 15500: REM POKE SOUND

FOR I = 0 TO 3: READ ADDS(I): NEXT I
FOR I = 0 TO 3: READ AANSS$(I): NEXT I
FOR I = 0 TO 3: READ MULTS$(I): NEXT I
FOR I = 0 TO 3: READ MANSS(I): NEXT I
REM

REM kkkkdkkidhkdkdhhdk

REM ** MATN MENU *¥*
REM dkkkkhkhkkkikkkikkk
REM

HOME : VTAB 8: HTAB 5

Line 110-135 initializes
question and answer variables
for the drill module.

Main menu is presented.

PRINT " MAIN MENU "

PRINT : FRINT " 1. T CAN COUNT"

PRINT : PRINT " 2. T CAN PRODUCE GRAPHICS"
PRINT : PRINT " 3, I CAN COMPUTE AND COMPARE"
PRINT : PRINT " 4. I CAN DRILL"

FRINT : PRINT " 5, END"

GOSUB 10000: REM GET ANSWER

ON ANS GOSUB 1000,2000,3000,4000
IF ANS < > 5 THEN 550

END

Note that the menu allows the student to get out of the program.
important control characteristic that should be included in almost all
computerized lessons.

T™he END statement comes at
the end of the control
module.,

Note that remark statements placed on line 100 and 630 clarify what will happen
this is the subroutine function description. The

This is a very

989

990

992

996

997

1000
1050
1100
1200
1210
1220
1230
1240
1250
1255
1260
1270
1275
1290
1292
1294
1295
1300
1310
1315
1318
1320
1321
1330
1340
1341
1345
1346
1350
1380
1381
1382
1383
1385
1386
1388
1390
1392
1393
1395
1397
1398

REM F*kkakkkkkkkhdrhhid

REM * (OUNT MODULE *
REM khkkkkhhkkkkkkkkkkkk module_
REM modules.
TIME = 20
REM
HOME : VTAB 10
PRINT " MENU ——e"
PRINT : PRINT
PRINT : PRINT "1. HOW HIGH AND LOW"
s PRINT : PRINT "2. IN WHAT INCREMENTS"
PRINT : FRINT "3. RETURN TO MAIN MENU"
GOSsuB 10000

2-13

Note that although the REM line numbers

IF ANS = 3 THEN RETURN
ON ANS GOSUB 1300,1400
GOTO 1100

REM
REM
REM
REM
REM

dkkkkkkkkhkkkkkkhkkkkkkikhkhkkk

HOW HIGH & LOW SUB MODULE
Kk kk kR RKARRRRRRRRR IR KA TR

HOME : VTAB 10

PRINT
PRINT
PRINT
PRINT
FPRINT

"I CAN QOUNT FROM :
"ONE MILLION BFIOW ZERO":
"T0 ONE MILLION ABOVE ZERO":

L LI 1)

FRINT

:": PRINT : PRINT

PRINT

appear in the listed program, they are

never actually "seen" by the control

FEM lines are "between" two
This reduces execution time.

Note that a sub-menu has
been created and that an exit
to the main menu has been
provided.

Notice again how the REM
statements are never "seen”
by the program as it runs.

PRINT "WOULD YOU LIKE ME TO COUNT FOR YOU?"

INPUT " (YES OR NO)";ANS$

IF LEFT$ (ANSS$,1) = "Y" THEN 1380
HOME : GR : TEXT : GOSUB 15000
FOR I = 1 TO 50: NEXT I

HOME : VIAB 10: BTAB 5

PRINT "OK, BUT I REALLY DID WANT TO...."

GOSUB 11000: HOME : GOTO 1100
HOME ; VTAB 5: PRINT "SO YOU WON'T BE HERE ALL DAY WAITING"
PRINT "FOR ME TO COUNT, KEEP THE NUMBERS SMALL"
PRINT "FOR EXAMPLE, FROM 1000 TO 5000.

PRINT
PRINT
PRINT

PRINT

INPUT "WHERE SHOULD I START QOUNTING?
PRINT : PRINT

INPUT "WHERE SHOULD I STOP COUNTING?
FOR I = BEG TO QUIT

ONERR GOTO 16000

GOSUB 12000

PRINT I;" ";

NEXT

I

GOSUB 11000: HOME : GOTO 1100

Line 1330 checks to see if the
leftmost character in ANSS is
a "y". This means that the
student can mistype the "“yes"
so long as the first letter

is a "y".

" +BEG

"QUIT

The ON command in line 1260 is a very easy way to perform various sub-modules
without having to use three IF statements.

1399
1400
1405
1406
1410
1415
1420
1430
1431
1435
1440
1450
1465
1470
1475
1480
1485
1490
1495
1500
1600
1990
2000
2005
2010
2050
2055
2060
2070
2075
2080
2090
2091
2092
2093
2094
2095

REM kkkkkkkkkhkkhkkkrkkkkkk

REM * INCREMENT S-MODULE *
REM Hhkkkkkhkkkhhhhkkhkhrdk

REM

HOME : VIAB 5

PRINT "I CAN COUNT BY ANY INCREMENT YOU LIKE.": PRINT

PRINT "I CAN QOUNT FORWARD OR BACKWARD"

PRINT : PRINT " (TO MAKE ME PRINT BACKWARD, ENTER"

PRINT : PRINT "A NEGATIVE NUMBER FOR THE INCREMENT)"

VIAB 15: INPUT "BY WHAT INCREMENT SHOULD I COUNT ?";J: PRINT
PRINT : INPUT "WHERE SHOULD I START COUNTING ?";BEG: PRINT
PRINT : INPUT "WHERE SHOULD I STOP CQOUNTING ?2";QUIT

;TEXT : HOME : VIAB 10: HTAB 10

PRINT "-—I CAN PRODUCE GRAPHICS—"

1. SHAPES"

2, FULL SCREEN ONE COLOR"
3. BARS OF DIFFERENT COLOR"
4. RETURN TO MAIN MENU"

HOME

FOR I = BBG TO QUIT STEP J
ONERR GOTO 16000

PRINT I;" ";

GOSUB 12000

NEXT 1

GOSUB 11000

RETURN

REM

REM khkkkkkhkkhkkkkktkhkikk
REM * GRAPHICS MODULE *
REM ERERRERERAKREAAAKk AR hkX*%
REM

REM

PRINT : PRINT "
PRINT : PRINT "

PRINT : PRINT "

PRINT : PRINT "

REM

GOSUB 10000

IF ANS = 4 THEN RETURN

ON ANS GOSUB 2100,2200,2300

REM

The VTAB and HTAB commands help position the menus and the text on the screen.
The variables are named so that they are indicative of their function.

Scmetimes. REM is used just to create a space in the programming itself to set
off sections of the program.

2-14

2098
2100
2101
2102
2103
2105
2106
2107
2109
2111
2113
2115
2118
2119
2120
2125
2130
2135
2140
2145
2147
2148
2150
2155
2160
2165
2170
2171
2175
2180
2185
2187
2188
2150
2195
2196
2197
2198

REM *k¥%kkkdkkhkkkkkhkkhhkkdk

REM * SHAPES SUB~-MODULE *
Rﬂ.‘l khkkkkkhkkdkkkhkkkthkkkkkk
FORN=1TO5

HOME : GR

GOSUB 14000

REM TRIANGLE
I1=29:J=29

FOR K =4 T0 11

HLIN I,J AT K
I=I-1:J=J+1

NEXT K

GOSUB 14000

REM UPPER LEFT FIGURE
FOR I =1 T0 10

HLIN 1,5 AT I

NEXT I

FORI =1 TO 10

VLIN 1,5 AT I

NEXT I

GOSUB 14000

REM SMALL SQ. BOX AT TOP
FOR I = 13 TO 18

VLIN 0,8 AT I

NEXT I

REM

GOSUB 14000

REM BOTTOM REC. BOX
FOR I =10 TO 20

HLIN 10,20 AT I

NEXT I

GOSUB 14000

REM BOTTCM LONG BAR
FOR I =21 TO 23

HLIN 0,39 AT I

NEXT I

GOSUB 13000: NEXT N

TEXT : RETURN

Note that variables are used to set

the drawing positions of the horizontal
and vertical lines. This cuts down

on the mumber of programming lines
that must be written and entered into
the computer. Execution time is also
decreased by reducing the number of
lines.

This part of the program is a good
example of a nested loop. The
outer loop N (lines 2102 and 2197)
dictate that the entire drawing
will be repeated five times.

The inner loops actually draw the
figures.

Occasionally one of the shapes will disappear on the screen. This is caused by

the computer selecting the color black.

2-16

2199 REM *kkkkkkkskhkikkkdhkd

2200 REM * FULL SCREEN QOLOR *

9910 REM ¥rkkkkhkkkkrhkhkhkihs

2215 REM

2250 HOME : VIAB 3

2255 PRINT "HERE ARE THE QOLORS :": PRINT : PRINT
2260 PRINT "1. MAGENTA","8. BROWN": PRINT

2265 PRINT "2. DARK BLUE","9. ORANGE": PRINT
2270 PRINT "3. PURPLE","10 GRAY": PRINT

2275 PRINT "4. DARK GREEN","ll. PINK": FRINT
2280 PRINT "5. GRAY 1","12. LIGHT GREEN": PRINT
2285 PRINT "6. MED. BLUE","13. YELLOW": PRINT
2290 PRINT "7. LIGHT BLUE","14. AQUA": PRINT
2291 PRINT "","15. WHITE"

2292 GOSUB 10000

2293 IF ANS < = 0 OR ANS > 15 THEN PRINT BEEPS;: GOTO 2292
2294 HOME : GR : QULOR= ANS

2296 FOR I =0 T0 3%9: FORJ = 0 TO 39

2297 PLOT I.J

2298 NEXT J,I: GOSUB 13000: RETURN

2299 REM

2300 REM *kkxkkkikhikrdk Line 2293 checks to see that the
2301 REM * COLOR BARS * nuvber is 1-15. (Recall that we
2302 REM * SUB-MODULE * stored the ASCII representation of
2303 REM ***x&kkkkkkkikks a beep in BEEP$ back in the control
2310 REM module), The semicolon keeps the
2340 TIME = 50 cursor on the same line when sub-
2350 GR : HOME routine 10000 is called again fram
2355 FORJ=1T0 3 line 2292,

2356 GOSUB 15000
2360 FOR I =0 T0 39
2370 GOSUB 14000: REM RND CQOLOR

2380 VLIN 0,39 AT I Line 2340 sets the variable TIME
2385 NEXT I that will be used by subroutine
2390 GOSUB 12000: NEXT J 12000.

2392 GOSUB 13000

2395 RETURN

The error trapping that is done on line 2293 is a very important part of any
program. If the student pushes any other key than that asked for. the computer
knows it and responds with some correctional instructions. Sometimes, the
question will be repeated, Other times. the student might be reprimanded. By
controlling the loop, counters could be established that limit the number of
incorrect entries. or. specific error messages could be printed after certain
sequences of attempts.

2500
2995
3000
3005
3008
3009
3010
3015
3020
3025
3030
3040
3042
3043
3045
3048
3050
3100
3105
3108
3110
3130
3135
3138
3140
3142
3145
3147
3148
3150
3151
3152
3155
3158
316l

Note
10.

REM

REM **kxkddkhidkihkkdrink

REM * COMPUTE & COMPARE *

REM * MODULE *

REM *kkkkkkhkkhhhhkkhkakk

REM

HOME : VIAB 10

PRINT : PRINT "I CAN COMPUTE AND COMPARE...."
VIAB 14: PRINT "1. ADD,SUB,MILT,DIV"
PRINT : PRINT "2. QOMPARE TWO VALUES"
PRINT : PRINT "3, RETURN TO MAIN MENU"
GOSUB 10000

IF ANS = 3 THEN RETURN

ON ANS GOSUB 3100,3200

GOTO 3010

REM

REM *&kkdkkkkkkirkhdkhins

REM * ADD SUB MULT DIV *

REM * SUB MODULE *

REM *hkkkhEakhkhkhrxdkrik

REM

HOME : VIAB 5

PRINT "I CAN PERFORM THE FOLLOWING :"
VIAB 8

PRINT : PRINT "1. ADD NUMBERS"

FRINT : PRINT "2. SUBTRACT NUMBERS"
PRINT : PRINT "3. MULTIPLY NUMBERS"
PRINT : PRINT "4. DIVIDE NUMBERS"

PRINT : PRINT "5. CHOOSE ANOTHER SUBJECT"
GOsUB 10000

IF ANS = 5 THEN RETURN

IF ANS > 3 THEN 3172

HOME : PRINT "HOW MANY NUMBERS DO YOU WANT TO ENTER"
PRINT : INPUT "(MUST BE 10 OR LESS)";NN
IF NN > 10 THEN 3155

that line 3161 sends control back to line 3155 if the input is

2-17

greater than

2-18

ADD SUB MULT DIV SUB MODULE. Cont.

3162 FORJ = 1 TO NN

3163 PRINT "ENTER NUMBER ";J

3164 INPUT NUM(J): NEXT J

3165 IF ANS = 5 THEN RETURN

3166 ON ANS GOSUB 3168,3173,3180.3185,3198

3167 GOTO 3130

3168 HOME : VIAB 5: FOR J = 1 T0 NN

3169 SUM = SUM + NUM(J): PRINT SPC{ 10) ;NUM(J)

3170 NEXT J

3171 PRINT SPC(8);"+": PRINT SPC(8);"~———o"
3172 PRINT SPC(10);SUM: GOSUB 13000: RETURN

3173 HOME : VIAB 5:SUM = NUM(1): FOR J = 1 'TO NN
3174 SUM = SUM - NUM(J + 1): PRINT SPC(10);NUM(J)
3175 NEXT J: PRINT SPC(8);"-"

3176 PRINT SPC(8);"-— " PRINT SPC(10);SUM
3179 GOSUB 13000: RETURN

3180 SUM = 1: FORJ = 1 TO NN:SUM = SUM * NUM(J)
3181 PRINT SPC(10);NUM(J): NEXT J

3182 PRINT SPC(8);"X": PRINT SPC(8);"
3183 PRINT SPC(10);SUM

3184 GOSUB 13000: RETURN

3185 HOME : INPUT "ENTER NUMBER TO BE DIVIDED";DVND
3186 PRINT : INPUT "ENTER NUMBER TO DIVIDE BY ";DIVSR
3187 PRINT : PRINT : PRINT

3188 PRINT TAB{ 10);DVND;" / ";DIVSR;" = ";DVND
3189 GOSUB 13000: RETURN

A considerable amount of effort should be made in this part of the program to
format the screen exactly the way it is wanted., Readability is usually enhanced
if you use generous spacing.

The SPC command used above is a little different than TAB, SPC moves the
printing over the number of spaces indicated fram the present cursor position.
This contrasts to the TAB command which always moves over fram the left margin.

3190
3191
3192

3193
3197
3198
3199
3200
3205
3208
3209
3210
3215
3220
3225
3230
3235
3240
3243
3245
3250
3255
3260
3268
3270
3275
3278
3280
3285
3288

HQME : INPUT "ENTER THE NMUMBER YOU WANT TO DIVIDE" ;:DVND
PRINT : INPUT "ENTER THE NUMBER TO DIVIDE BY";DIVSR
: PRINT : PRINT TAB(10);".": PRINT SPC(3);DVND; TAB(10);"/";

SPC{ 5);DIVR;" = ";DVND / DIVSR: PRINT TAB(10);"."
GOSUB 13000: GOTO 3130

RETURN

REM

REM *kdkkkkhikhihhkhhkhrhhhdk
REM * COMPARE TWO VALUES *

REM * SUB MODULE *
REM *hkkkkahkhhkhkkhihkkrshx
REM

HOME : VI2B 5

PRINT "COMPARE MODULE": PRINT

HTAB 5: PRINT "1, NUMBERS"

HTAB 5: PRINT "2, LETTERS"

HTAB 5: PRINT "3, BOTH NUMBERS AND LETTERS"
HTAB 5: PRINT "4, CHOOSE ANCTHER OPTION"
GOSUB 10000

IF ANS = 4 THEN RETURN

ON ANS GOSUB 3260,3270,3280

GOTO 3210

REM

GOSUB 3400

RETURN

ITEMS = "LETTERS"

GOsSUB 3300

RETURN

ITEM$ = "NUMBERS AND LETTERS"

GOSUB 3300

RETURN

Line 3245 sends the program to a nearby subroutine which in turn calls another
subroutine., Subroutines can call other subroutines.

2-20

3290 REM
3295 REM kkkEkkkkkkkkkkkkkikk

3300 REM * ALPHABETIC SORT *

3303 REM *rkkkkkkkkdkdkhhixks

3305 REM

3310 HOME : VIAB 5

3320 PRINT "OK, LET'S COMPARE ";ITEMS$

3325 PRINT : PRINT "HO4 MANY ";ITEMS

3326 PRINT "DO YOU WANT TO ENTER?"

3327 INPUT " (MUST BE NO MORE THAN 10 ITEMS)";NN
3330 IF NN > 10 THEN 3310

3335 REM * INPUT THE ITEMS *

3338 REM

3340 FOR I =1 TO NN

3345 PRINT "ENTER ITEM ";I;: INPUT " ? ";OLD$(I)
3350 NEXT I

3360 HOME : VTAB 8: HTAB 10

3361 PRINT "AS ENTERED IN CORDER": HTAB 10

3362 PRINT "~ - —

3365 FOR I = 1 TO NN: HTAB 12: PRINT OLDS(I): NEXT I
3370 START = 1

3375 FORI =1 TO NN

3380 FOR K = START TO NN

3383 1IF OLD$(I) < = OLDS(K) THEN 3387

3385 TEMPS = OLDS$(I):OLDS(I) = OLDS(K):OLD$(K) = TEMPS
3387 NEXT K

3390 START = START + 1

3393 NEXT I

3395 VTAB 10: FOR I = 1 TO NN

3397 HTAB 28: PRINT OLD$(I): NEXT I

3398 GOSUB 13000: RETURN

Note that in line 3327, the student is instructed regarding the limitations of
the response. Clear instructions to the student are necessary.

There are many ways to program an alphabetic sort. The sort here is known as a
bubble sort. This type of sort is fine for small numbers of lines, but if large
lists are to be sorted, then a more efficient method should be used.

3399
3400
3405
3410
3415
3420
3425
3426
3427
3430
3435
3438
3440
3441
3442
3445
3446
3447
3448
3449
3450
3460
3470
3475
3480
3485
34380
3495
3500
3505
3510
3515
3520
3525

REM

REM By e Lt

REM * COMPARE NUMBERS *

REM e s T Ll Lad

REM

HOME : VIAB 5

PRINT “OK, LET'S COMPARE NUMBERS"

PRINT : PRINT "HOW MANY NUMBERS DO YOU WANT TO ENTER 2"
PRINT : INPUT "(MUST BE LESS THAN 10 ITEMS })";NN
IF NN > 10 THEN 3420

FOR I = 1 TO NN: PRINT "ENTER ITEM ";I;: INPUT " 2 ";NOM(I)
NEXT I

HOME : VTAB 8: HTAB 10

PRINT "AS ENTERED IN O ": HTAB 10
PRINT "——————rr— e e

FOR I =1 TO NN: HTAB 12: PRINT NUM{I): NEXT I
REM

REM *hkkkkkhkkhkkdkk

REM * NUMERIC SORT *

REM #*ddkkknkhkkhkkhhn

REM

START = 1

FORI =1 TONN

FOR K = START TO NN

IF NUM(I} < = NUM(K) THEN 3490

TEMP = NUM(I):NUM(I} = NUM(K):NUM(K} = TEMP
NEXT K

START = START + 1

NEXT I

VTAB 10

FORI=1TONN

BTAB 28: PRINT NUM(I)

NEXT I

COSUB 13000: RETURN

2-21

3989
3990
4000
4005
4015
4020
4025
4026
4027
4028
4030
4035
4038
4040
4045
4090
4100
4105
4110
4130
4132
4135
4140
4190
4195
4200
4203
4205
4220
4230
4240
4250

REM
REM *khkhdkkhkkkkhdkrk

REM ¥ DRILL MODULE *

REM *hkkkkkkkkihkhhk

TIME = 1000

HOME : VIAB 10

PRINT "I CAN DRILL IN :": PRINT : HTAB 5
PRINT "1, ADDITION": PRINT : HTAB 5
PRINT "2. MULTIPLICATION": PRINT : HTAB 5
PRINT "3. RETURN TO MAIN MENU"

GOSUB 10000

IF ANS = 3 THEN RETURN

ON ANS GOSUB 4100,4200

GOTO 4020

REM

REM *kkkhkkkkkkikrhihis

REM * ADDITION DRILL *

REM Hkkkkkdkkihkkkkhhh®

REM

GOSUB 17000: REM RANDOM NUMBER GENERATOR
PROBLEM$ = ADDS (NUM) :ANSS$ = ARNSS (NUM)
GOSUB 18000: REM PRINT PROBLEM

RETURN

REM

REM ***kkkhkkhhkkdhhkrhkhkin

REM * MULTIPLICATION DRILL *

REM kkkkkkhkkkkkkkhkkhhikhkhk

REM

GOSUB 17000

PROBLEMS = MULTS (NUM) :ANSS = MANSS (NUM)
GOSUB 18000

RETURN

2-22

9989 REM
9990 REM

10000
10003
10004
10020
10050
10070
10080
10090
10092
10095
11000
11010
11011

11020

11050
11060
11070
11080
11090
11092
11095
12000
12005
12010
12050
12060
12065
12070
13000
13005
13010
13030
13050
13060
13070
13090

REM

kkkkkkkkkkkkkkhkkkkhkk

REM * INPUT MENU CHOICE *
REM *kkkkkakhkhhkkhkdhhikk

ONERR GOTO 16000
VTAB 24: HTAB 1: PRINT "ENTER NUMBER FROM MENU";
GET ANSS$

ANS =

VAL (ANSS$)

RETURN

REM
REM
REM
REM
REM

kkkkkkkkhkkhhkikkkikhk

* SCROLLING ROUTINE *
Fhkkkkkhkr kK hREARRRARAR

GOSUB 15000

FOR J =1 TO 25

PRINT

FOR K = 1 TO 100: NEXT K
NEXT J

RETURN

REM
REM
REM
REM
REM

kkkkhkhkkkkkkkkhkkik

* DELAY ROUTINE *
*hhkkkhkokkkkkkhkk

FORL =1 TO TIME: NEXT L
RETURN

REM
REM
REM
‘REM
REM

kkkkkkkhkkkhkkhkkhkkk

* PRESS SPACE BAR *
hkkakkkhkkkkikkkkkk

VIAB 22
PRINT "PRESS SPACE BAR TO CONTINUE";
GET AS

IF AS < > CHR$ (32) THEN 13060

RETURN

2-23

The time delay here is generic.

It can be set for different waiting
periods based on the needs of the
lesson at any given instance.

S N T N AN 3N NN S 2N I O OB S A BN T O = ==

13095
13990
14000
14005
14010
14050
14060
14065
14990
15000
15005
15006
15060
15090
15100
15110
15120
15130
15140
15150
15151
15160
15490
15495
15496
15500
15510
15511
15520
15530
15540
15550

REM
REM %%kkkkhkhhkhhhhbkdhk

REM * COLOR GENERATOR *

REM ¥dkkhkhkhkhhkkkdkhdk

REM

COLOR= INT (14 * RND (1)) +1
RETURN

REM

REM *kkkkdkkkhkdhhhhkkhik

REM * LASER SOUND MAKER ¥
REM kkkkkkhkkkkkkikkkkhkikkk
REM

& T255,1

FOR P = 250 TO 50 STEP - 2
& TP'Z

. NEXT P

FOR P = 50 TO 250 STEP 2

& TP,2

NEXT P

RETURN

REM

REM *%kkkkdkkkhhkhkhxhkhrhhk

REM * POKE SOUND ROUTINE *

REM *kkkkkkkhkkkhhhkrhkhrhk

REM

FOR I = 768 TO 833: READ P: POKE I,P: NEXT I

DATA 201,84,208,15,32,177,0,32,248,230,138,72,32,183,0,201,44,240,3
DATA 76,201,222,32,177,0,32,248,230

DATA 104,134,3,134,},133,0,170,160,1,132,2,173,48,192,136,208,4,198
DATA 1,240,7,202,208,246,166,0,208,239,165,3,133,1,198,2,208,241,96
POKE 1013,76: POKE 1014,0: POKE 1015,3

RETURN

15565
15990
16000
16005
16010
16020
16050
16055
16060
16989
16990
17000
17001
17003
17005
17010
17020
17990
17994
17995
17996
17997
18000
18006
18007
18008
18009
18010
18020
18030
18035
18040
18045
18048
18049
18050
18051
18052
18055
18060
18065
18070
18075

REM khkkkkhkkkkkkhkkkkk

REM * ERRCR HANDLER *
REM *hshkkkikkhihhthkd

= PEEK (222)
IF E =16 OR E = 163 THEN GOTO 16060

POKE 216,0: RESUME

REM *hkkkkkkbhkhkkhids
REM * RANDOM NUMBER *

REM * GENERATOR *
REM Fhkkkhkkkkhhkhkhd

'NUM = INT (3 * RND (1))

RETURN
REM
REM #kkdkkdkkihhihhkhhid

REM * GENERIC PROBLEM *

REM * PRINTER *
REM ‘*kkkkdkkkhhrkkkhkkhkk
REM

FORJ=1T03

HOME : VIAB 5

PRINT "ANSWER THE FOLLOWING BY ENTERING THE"
PRINT : PRINT "LETTER OF THE CORRECT RESPONSE"
VTAB 10

FRINT PROBLEMS

GOSUB 19000: REM GET ANSWER

IF RES$ = ANSS THEN 18060

VI2AB 18: HTAB 5: PRINT "NO, THAT'S NOT CORRECT..."
GOSUB 12000

NEXT J

VIAB 18: HTAB 1: PRINT SPC(40): HTAB 1
PRINT "THE CORRECT ANSWER IS: “;ANSS

TIME = 2000

GOSUB 12000

RETURN

REM

GOSUB 2300: REM QOLOR BARS

TEXT : HOME : PRINT CRESS(NUM)

GOSUB 12000: RETURN

2-26

18990: REM
18995 REM **&kkkkkXkkkkdhhrhid

19000 REM * GET MATH RESPONSE *

19003 REM **kdkkkdkkkikhhkdkhhhhhk

19004 REM

190605 VTAB 22

19010 VTAB 24: PRINT "ENTER ";: INVERSE : PRINT "LETTER";: NORMAL : PRINT " OF
CORRECT RESFONSE";

19020 GET RESS

19030 RETURN

19487 REM

10489 REM *#*kdkkdkdkhhkkkhkhrkirk

19490 REM * ADDITION PROBLEMS *

19495 REM *kkkkkdkhkkkddhhhikhkkk

19496 REM

19500 DATA 2+2=2? A.5 C. 6
B. 2 D. 4,4+5=2? A. 5 C.8
B.9 D.10
19505 DATA 3 + 3
B.0O D, 6,4+7
B.9 D.3
19790 DATA D,B,D,A

19792 REM

19794 REM #*kkkkkkdkkkdkikdkhkhhkhkrd

19796 REM * MULTICA. PROBLEMS *
10798 REM *kkkkkkkkikhkhkkhkhhkk

? A9 C. 7
? A, 11 C, 12

19799 REM

19800 DATA 3 X 3 =7 A. 16 C. 6 B. 9 D.
8,4 X 4=27 A, 16 C. 15 B. 8 D. 9

19805 DATA 2X 4 =72 A. 6 C. 12 B. 8 D.
10,5X2=7? A. 8 C. 10 B. 5 D. 11

19990 DATA B,A,B,C

CHAPTER THREE

LESSON FEATURES; OR, USEFUL SUBROUTINES

Beginning programmers often see some very useful features of commercial
programs that they would like to incorporate into their lessons to make their
programs run more smoothly and look more professional. Many of these features
are not explained very well in some of the common programming reference manuals
but are well known to advanced programmers or can be devised by them as needed.
The idea for this chapter is to provide a number of common techniques that can
be used as is or modified to fit individual lesson needs. Add to this chapter
as you see other techniques and figure out how they work. You might also wish
to put these short programs on a utility diskette which would contain a
collection of independent modules or subroutines ready to pull in and use during
your lesson construction.

The reader should note that when sample programs are given in this chapter,
parts of a line might be underlined, This is the signal that the programmer
must supply scome information for that line., The line should not be typed into

the computer as printed.

Feature # 1:

PRESS ANY KEY TO CONTINUE
(getting the student to the next section of the lesson)

Necegssary comrand:

10 PRINT "PRESS ANY KEY TO CONTINUE"

20 GET AS (any string variable name is ok)
Comments:

Any key pressed, whether on purpose or accidentally, will trigger the
program to go to the next part of the lesson. The student does not have to
press the return key. This method creates a problem because the program can
advance without the student wanting it to do so. Notice that the GET command is
used here. GET will accept only a single character as input from the keyboard.
If more than one character is typed, only the first is regarded. Another
problem is that a key can be accidently pressed before the GET statement appears
on the screen. Applesoft will hold one keystroke in a buffer so when the GET
statement comes up, the program will trigger.

Many educational programs use the GET command because children only need to

press one key — they don't have to press RETURN after every answer.

Sapple proaram:
10 HOME
20 PRINT "WHAT IS 2 + 22"
30 VTAB 20
40 PRINT "PRESS ANY KEY TO SEE THE ANSWER":
50 GET BS

60 HOME
70 PRINT "4 IS THE ANSWER"

Advanced tip:
If you want to guard against a spurious key being pressed, change line 40
to the "PRESS THE SPACE BAR", then check to see if the space bar was pressed

(see Feature # 3) after line 50 and then GOTO line 30 (reprint the request

line).

Feature # 2:

FRESS RETURN TO CONTINUE
(getting the student to the next section of the lesson)

Necessary command:

10 INPUT "PRESS RETURN TO QONTINUE";AS
(AS can be any string variable name)

comments:
Using the input command here requires the student to press the return key
to continue the lesson. The advantage here is that an accidental pressing of

any key will not trigger the lesson to advance until the return key is pressed.

Sample programs Sanple proaram:
10 HOME 10 HOME
20 PRINT "WHAT 1S 2 + 22" 20 PRINT "WHAT IS 2 + 22"
30 VIAB 20 30 GOSUB 100
40 INPUT "PRESS RETURN TO or 40 HOME
SEE THE ANSWFR";BS$ 50 PRINT "4 1S THE ANSWER"
50 HOME 60 END
60 PRINT "4 IS THE ANSWER" 100 VTAB 20

110 INPUT "PRESS RETURN TO
SEE THE ANSWER";BS$
120 RETURN
{ation:
If you wish a single inverse "R" instead of the words

"PRESS RETURN TO CONTINUE," the necessary command is:

10 VIAB 23 : HTAB 39 : INVERSE : PRINT "R"; : NORMAL

You can vary the position of the "R" on the screen but don't print lower
than 23 or to the right more than 39, Be sure to include the semicolon after
the "R" because this keeps the cursor waiting for the input on the 23rd line.
If the semicolon on line 40 in the first sample program and line 110 in the

second sample program is absent, the cursor will appear on the next line.

Peature # 3:

PRESS SPACE BAR TO QONTINUE
(getting the student to the next section of the lesson)

Necessary command:
10 PRINT "PRESS SPACE BAR TO CONTINUE";
20 GET AS
30 IF AS = CHR$(32) THEN 50

40 GOTO 20
50 REM REST OF FROGRAM HERE OR RETURN IF A SUBROUTINE

Comments:

CHR$(32) is the ASCII code for the space bar. 2ny character on the
keyboard with an ASCII code number may be used with the commands above (on the
Apple II+, ASCII codes 32-94 may be used, on the Apple IIe or IIc, ASCII codes
32-127 may be used). See the ASCII list which follows for the code mubers and

the characters they represent.

Sample program: Sample. program:
10 HOME 10 HOME
20 PRINT "WHAT IS 2 + 22" 20 PRINT "WHAT IS 2 + 22"
30 VIAB 20 30 GOSUB 100
40 PRINT "PRESS SPACE BAR TO 40 HOME
SEE ANSWER"; or 50 PRINT "4 IS THE ANSWER"
50 GET 2$ 60 END
60 IF 2$ = CHR$(32) THEN 80 100 VTAB 20
70 GOTO 50 110 PRINT "PRESS SPACE BAR TO
80 HOME SEE ANSWER";: GET Z$
90 PRINT "4 IS THE ANSWER" 120 IF 2$ = CHRS$(32) THEN RETURN
130 GOTO 100
{ation:

You may wish to have an inverse "SB" in the lower right hand corner of the
screen rather than using the full bottom line to indicate "PRESS SPACE BAR TO
CONTINUE." Line 10 of the program at the top of the page would then.read:

10 VTAB 21 : HTAB 38 : INVERSE : PRINT "SB"; : NORMAL
You can vary the position of the "SB" on the screen depending on what you have
printed on the screen. VTAB 24 is the last line on the screen. HTAB 38 is the
right-most position possible when printing two characters and still leave room

for the cursor. If the cursor appears on the next line, you probably forgot the

semicolon after the SB.

3
ASCII Character Codes
|ASCII] On |Key |Key | [ASCII| On |[Key |Key | |ASCII| On [|Key |Key |
| Code IScreen=I1+ |cse { |Code |Screen|II+ |c&e | |Code |Screen|II+ |c&e |
! | | | ! I I | I I ! |
| 0 | lct—@lct-@] |48 | 0 O |0 | | 9| * Inaa.l ™ |
[1] lct=Alct-A] 149 | 1 1 {11 | | 97 |} or aln.a.l a |
i 2 1 lct-Blct-B] |50 | 2 12 12 | | 98 |" or bln,a.l b |
| 3 | let=Clct—=C] 151 | 3 |3 {13 | | 99 |#or clna.tl ¢ |
| 4 | jet-Djct-D] 152 | 4 14 |4 | 1100 1$or dln.a.l d |
b5 | lct-Elct-E] | 53 | 5§ {5 |5 | |2101 1% or eln.a.| e |
6		let-Flct-F	[54	6	6 16 1		102	& or fin.a.l £
7	(bell)lct-Glct-G]	85	7 {72 17	1103	" or g	ln.a.l g		
8 [(left)lct~-Hor		5	8	8	8		104	(or hin.a.l h
9	(tab) lct-Tor tab	57	¢ {9 {9 ! [105) or ifn.a.	i			
110 l(down)lct-Jor		58	=« 1= 1=«	1106 {* or jin.a.l J				
111	(up) jet-Kor ! 159	;			1107	+or kin.a.	k	
12	jet-Llct-L]	60	<	< <	11081}, or lin.a.	1		
I 13 lc.r. lct-Mjct-M	[61	= [=	= 1] [109 [-or mn.a.	l m		
14	lct—Njct-N	{62 [>	>	> [1110	. or nin.a.l n			
15	let=Olet-0f 163	2 t2	2	1111	/ or oln.a.l o			
116	Jct-Plet-P		64	@	@	e		112
17 1 let=Qlet—Q} 165	A [A	[sftal	113	1 or g	n.a.l g			
f 18	Jet-=R	ct~RI 166	B	B	sftB		114 12 or rin.a.l r	
19	lct-Slect-g	! 67 t €	C IsftC		115	3 or sin.a.	s	
20		[ct—Tjct-T		68	D	D	sftD}	116
21 Ispace	let-Uor		69	E	E	[sftEl	117	5 or uin.a.i u
22	Jet=Vict-v]	70	F	F	[sftF		118	6 or vin.a.
1 23	lctWict-w		71	6	G IsftGl	119 [7 or win.a.	w	
24	canc.llct-X	et-X! 172	B	B	sftH		120	8 or x
25	let-¥let=¥! (73	I } I	I[sftIl	121	9 or yIln.a.l y			
26	lct-2lct-2] 174	I	J lIsftJ	l 1 122	: or zln.a.	z		
27		IEBsc [Esc		75	K	K Isftkf 1123	; or {In.a.!l {	
1 28	In.a.jet=\] [76	L 1L	IsftL]	124	[<or	In.a.l		
1 29	letsMlet-11	77	M	M IsftM!	125	= or }ln.a.	}	
30	lct-"let="1 178	N	N	sftN	1126 1> or "	n.a.	7	
31	In.a.	ct-sft	79	©	O	Isfto	1127 l2or/d.ln.a.ldel.!	
32	space	spb ispb [80	P	P [sftP			
133	¢t v 1t [18	Q@	©Q IsftQ	Note: 128-255 repeat codes				
134	* ™ 1"	182	R	R	sftR} 0-127.			
{35	#	&	#	18	s	s	sfts]	
13 1 $ [$!$		8	T	T	sftT	Note: Codes above 95 on the		
137	&= l% 1%) {8	U	U	sftu]l Apple IT+ produce strange				
38	&	&« &	18 { v	V [sftV] screen characters. A				
139	*	* 1"	[8	w	W	sftWwl program written on the		
140	(1 (V(18	x	X [sftX] IIe and run on the				
141 V)Y 1)y 1)	18	¥	Y	[sftY] II+ will generate these				
42	% [* t*	19	2	2	sftz] characters when a lower			
143	+	+ 1+ ! 191	[Ina.l [caseletter has been				
tasa V ,	, L+ 1 192	In.a.		used.				
45	- - 1= 119 1] [sftM	1					
146 § . . V. 1 19 |~ 17 171
147 { /7 |/ 1/ : | 95 =und.1.!n.a.|sft—l
' I | | |

n.a.

= not available;

sft = shift key; cts = control shift; ct

= control key:
und.1l. = underline; spb = space bar; Esc = Escape; C.I. = carriage return;
d. or del. = delete

3-6
Feature # 4:
TO HAVE QUESTION MARKS OR NO QUESTION MARKS; TO HAVE A CURSOR OR NO CURSCR
Necegsary command:

10 INPUT "DO YOU SEE A QUESTION MARRK ";AS The answer is no.

20 INPUT "DO YOU SEE A QUESTION MARK? ";AS$ The answer is yes,

30 PRINT "DO YOU SEE A QUESTION MARK *; The answer is no.
40 INPUT 2S5

50 PRINT "DO YOU SEE A QUESTION MERK? "; The answer is yes.
60 INPUT AS

50 PRINT "DO YOU SEE A QUESTION MARK?"; The answer is yes.,
60 GET AS

70 PRINT "DO YOU SEE A QUESTION MARK ";: The answer 1s no.
80 GET AS

Decide early in your design whether the question mark is needed or not.
Using one of the styles shown above from the beginning of your program will save
much debugging time. Note that the semicolon in all the examples above will
keep the cursor on the same line as the question.

Sometimes you do not want to have a cursor on the screen since you may feel
that it is distracting. You can use a subroutine to make the cursor invisible.
Below, we illustrate a subroutine which has the student press the space bar to
go from one text page to another with no blinking cursor present.

First we will print normally on a page of text:
10 FOME
20 PRINT "™THIS IS PAGE ONE OF TEXT"

Now we will run subroutine 1000, for "press the space bar to continue" and
at the same time suppress the cursor.

30 GOSUB 1000
Now we will print the next page of text.

40 PRINT "THIS IS THE SECOND PAGE OF TEXT"
50 END

Here is the subroutine:

* 998 REM SPACE BAR TO CONTINUE AND SUPRESS CURSOR
1000 VTAB 21 : BRTAB 39 : INVERSE : PRINT "SB" : NORMAL :
REM PRESS SPACE BAR COMMAND
1010 REM THE NEXT SIX LINES HIDE THE CURSOR
1020 QURSS = " " (Four spaces)
1030 C=1
1040 L = LEN (CURSS)
1050 VTAB 10 : HTAB 29 : PRINT MIDS$(CURSS,C,1)
1060 KEY = PEFK (-16384)
1070 IF KEY < 128 THEN C = C+1 - L * (C=L) : GOTO 1050
1080 RETURN

3-7
Feature # 5:
END THE PROGRAM WHEN "END" IS ENTERED; PROVIDE HINTS WHEN "H" 1S ENTERED
Necessary command:

10 INPUT "ANY MESSAGE";2S
20 IF AS = "END"'I‘I-IENPRINI‘"Y(I]HAVEENDED'IHEH?OGRAM.
GOODBYE." : END

Comuents:

By using the INPUT command rather than the GET command, the computer can
test for more than one character entered at the keyboard. If you wish to allow
the student to get out of the program at any time an input is requested, then
you must test every input for the word "END". The easiest thing to do is put
the test in a subroutine. It is much easier to type GOSUB line # than the

complete test statement "IF AS = "END"..."

Sample program:

10 HOME

20 INPUT "WHAT IS 2 + 2? "; AS

30 GOSUB 1000

35 IF A$ = "H" THEN PRINT "IF YOU HAVE TWO KITTENS AND YOUR SISTER EAS
TWO KITTENS, HOW MANY KITTENS ARE THERE?"

40 IF AS <> "4" THEN 10

50 PRINT "RIGHT"

60 HOME

70 INPUT "WHAT IS 4 + 42 "; AS

80 GOsSUB 1000

85 IF AS = "H" THEN PRINT "IF YOU HAVE FOUR DOGS AND YOUR NEIGHBOR HAS
FOUR DOGS, HOW MANY DOGS ARE IN THE NEIGHBORHOOD?®

90 IF AS < "8" THEN 60

95 END

100 REM QONTINUE PROGRAM ASKING QUESTIONS

110 :

999 REM THIS SUBROUTINE TESTS INPUT FOR THE WORD "END"

1000 IF A$ = "END" THEN HOME : VIAB 20 : HTAB 5 : PRINT "YOU HAVE

ENDED THE PROGRAM. GOODBYE" : END .
1010 RETURN

Variations:
In the same way, any input can be tested to send the student anywhere in

the program, For example, the word "hint" might give a general hint at any

Lo
|
o0

point (we have demonstrated a specific hint above which is unique to a given
place)., The word "menu" might take us there at any time. ™"Rule" might remind
us at any point of a principle to be followed. All checks for these types of
responses could be programmed in the same subroutine. There is one problem with
this technique. It is not a good idea to send the program to a subroutine and
then use a GOTO to get out of the subroutine. If you need a GOTO statement,
then test for the condition at each input like we did with "hint" in the example

above,

Feature # 6:

ERROR TRAPPING FOR CERTAIN NUMERIC KEYS
(you want the student to press a number 1 through 5 and no other keys)

Necessary command:

10 REM PRESENT A MENU HERE

15 PRINT "PLEASE ENTER NUMBER FROM MENU";

20 GET A%

30 A = VAL (AS)

40 IFA<1ORA >5 THEN 15 (you could print an error message here)

50 REM REST OF PROGRAM OR RETURN IF A SUBROUTINE
Conment.s:

This technique works with the GET command — not INPUT. Line 30: A = VAL
(AS) changes the student's response to a numerical value. Only the first
character of the input is changed. All letters would be changed to the value
zero. Numbers 0-9 remain unchanged. Line 40 will allow only the numbers 1-5 to

proceed to the rest of the program, otherwise, the menu is repeated.

Why not just input an A {or integer variable) rather than an A$ or real
variable? Inputing an integer variable and trapping it causes question marks
and the message "reenter” to appear on the screen plus other annoying problems.
That is why we recommend to input a string variable first and then convert it to

a number - it is just a more flexible trap.

Sanple program:
For a sample program, see sample program p. 3-11 which presents a menu and

then traps for any key other than 1-5.

3-10

Feature # 7:
PRESENT A MENU AND ALLOW THE STUDENT TO SELECT AN OPTION
Necessary command:
10 ON B GOTO line#, line#, line#, etc.
or
10 ON B GOSUB line#, linet#, line#, etc.
Commrents:
A menu usually has numbered choices. For example:
wWhich would you like to do?
1. Play a game
2. Take a test
3. See a picture
4. Quit
If you type in a 1, the computer executes the first line number listed
after the GOTO or GOSUB. If you type in a 2, the computer executes the second
line number listed after the GOTO or GOSUB. Using this command eliminates a
series of IF THEN statements such as: IF B = 1 THEN GOSUB 1000: IF B = 2 THEN
GOSUB 2000...etc. If you use GOSUB, remenber that the next line to be executed
after a RETURN statement is right after the "ON" statement. If you use a
"GOTO", you will need to tell the computer what line number to go to in the
executed section of the program. GOSUBs are usually the preferable technique to
use since this helps keep the modules independent and provides more control in
the module that called the subroutine.
Other appropriate examples:
ON X GOSUB 750,850,900,1500,1950

ON X GOSuUB 850,750,1500,900,1950

Sanmple program:

10 HOME
20 PRINT "WHICH WOULD ¥YOU LIKE?"
30 PRINT "1. PRINT A LIST"
40 PRINT "2. PRINT MAILING LABELS"
50 PRINT "3, ADD TO THE LIST"
60 PRINT "4. DELETE FROM THE LIST"
70 PRINT "5. END"
80 VTAB 20
90 INPUT "PLEASE ENTER THE NUMBER";AS
95 A = VAL(AS) : REM CHANGES RESFONSE TO A NUMERIC CHARACTER
96 IF A> 5 0RA < 1 THEN 10 : REM FRROR TRAPS FOR NUMBERS OUT OF RANGE
100 IF A = 5 THEN PRINT "THIS IS THE FND" : END
110 ON A GOSUB 1000,1500,2000,2500
120 GOTO 10
1000 HOME : PRINT "HERE IS YOUR LIST" : FOR X = 1 TO 1000 ; NEXT X : RETURN
1500 HOME : PRINT "HERE ARE YOUR MAILING LABELS" : FOR X = 1 TO 1000 :
NEXT X : RETURN
2000 HOME : PRINT "YOU CAN NOW ADD TO THE LIST" : FOR X = 1 TO 1000 :
NEXT X : RETURN
2500 HOME : PRINT "YOU CAN NOW DELETE FROM THE LIST" : FOR X = 1 TO
1000 : NEXT X : RETURN

Note: If the student enters a letter for the response on line 90, line $5
will change that letter to a zero. Line 96 will treat a zero as out of range
and will reprint the menu until a response 1-5 is entered. This technique is a
very effective error trap. If you would like to print an error message, change
line 96 to:

96 IF A<1 CRA > 5 THEN VIAB 20 : PRINT "MUST BE 1-5";:
FOR X =1 TO 1000 : NEXT X : GOTO 10

3-12

Feature § 8:

PACE TEXT OR GRBAPHICS
(i.e. slow down the printing of words or the drawing of graphics
on the screen)

Necessary command:
For text:

10 SPEED = a number from 0 to 255

20 PRINT "I WANT THIS TEXT TO BE PRINTED AS SLOW OR AS FAST AS
I WISH IT TO BE"

30 SPEED = 255 : REM RESET THE SPEED BACK TO MAXIMIM

For graphics:

10 GR : QOOLOR = 2
20 FOR X = 0 TO 39 : REM LOOP TO MAKE BACKGROUND CODOLOR
30 FORY = 0 TO 100 : NEXT Y : REM LOOP TO SLOW GRAPHIC DRAW DOWN
40 VLIN 0,39 AT X
50 NEXT X
Comments:

For text printing, the computer sets a normal speed of 255. Once the speed
is altered, it will remain so until it is changed or the RESET key is pressed.
The speed command has no effect on graphics so a different technique must be
used. Short time waits can be included at any point in the graphic drawing to
slow down a sequence. The effect of these time delays is an illusion of someone
painting color with a brush onto the screen. All types of tricks can be done.
For example, the background color can be created in normal speed and then, at a
slower speed, a car could be drawn something like an "etch a sketch" drawing
over the top of the background. Pressing the RESET key will return the speed to

its default setting of 255,

Sample program:

10 REM A PICTURE OF A TABLE AND A JAR
20 GR
25 :
30 COLOR = 8 : REM BACKGROUND
40 FOR ROW = 30 TO 40
50 HLIN 0,39 AT ROW
60 NEXT ROW
65 :
70 REM DRAW FLOOR
80 QOIOR = 15
90 FOR ROW = 0 TO 30
100 HLIN 0,39 AT ROW
110 NEXT ROW
115 3
120 REM DRAW TABLE
130 COIOR = O
140 HLIN 10,29 AT 15
150 GOSUB 1000
160 VLIN 16,30 AT 14
170 GOSUB 1000
180 VLIN 16,30 AT 25
190 GOSUB 1000
200 FOR K = 14 TO 10 STEP -1
210 HLIN 17,21 AT K
220 GOSUB 1000
230 NEXT K
240 PLOT 19,8
250 END
999 :
1000 FOR X =1 TO 200 : NEXT X : RETURN
DOWN DRAWING

¢ REM TIME DELAY SLOWS

Feature # 9:
ONE PART OF THE TEXT SCREEN REMAINS CONSTANT WHILE ANOTHER PART CHANGES.
For example: a rule can remain at the top of the screen while the student is

drilled on the rule at the bottom of the screen.

Necessary Command:

10 REM FIRST, SET UP THE PRINTING ON THE PART OF THE SCREEN THAT
DOES NOT CHANGE,

20 POKE ___,___ : REM SET THE SCROLLING WINDOW. (use one of the
number sets listed below)

30 REM THIRD, SET UP THE PART OF THE SCREEMN THAT WILL CHANGE.

Scrolling window commands:

POKE 32,___ set left margin of screen from 0 to 39

POKE 33,___ set right margin of screen from 39 to 0

FOKE 34,___ set top margin of screen from 0 to 23

POKE 35,____ set bottom margin of screen from 23 to 0
Comments:

These pokes only work on the text screen - not on the graphics screen.
Once ;you use a PCKE, you will have to reset it to normal. The normal settings
are: FOKE 32,0; POKE 33,40; POKE 34,0; POKE 35,23,

WARNING: Setting margins beyond the ranges shown above can erase part of
your program from memory.

With the 80-column card active, the ranges for the windows become: left:

0-78, right: 2-80, top: 0-23, bottom: 23-0.

Sample Program:

10 REM THIS PROGRAM DEMONSTRATES THE USE OF
20 REM THE SCROLLING WINDOW ON THE TEXT SCREEN
30 :

40 HOME

45

50 REM FIRST, SET UP THE PRINTING ON THE PART
55 REM OF THE SCREEN THAT DOFES NOT CHANGE,

60 VIAB 1

70 HTAB 8 : PRINT "RULE : 1 BEFCRE E"

80 FRINT : HTAB 16 : PRINT "EXCEPT AFTER"
90 PRINT : HTAB 16 : PRINT "C OR WHEN"
100 PRINT : HTAB 16 : PRINT "SOUNDED AS A
110 PRINT : HTAB 16 : PRINT "IN NEIGHBOR"
120 PRINT : PRINT
130 PRINT "HERE ARE SOME PROBLEMS FOR YOU:"
140

150 REM DRAW BORDER AROUND THE RULE

160 POKE 48,32 : VLIN 0,19 AT 13 : VLIN 0,19 AT 28 :
HLIN 13,28 AT 19

170 :

180 REM SEQOND, SET T™E SCROLLING WINDOW

190 POKE 34,15 : REM SET TOP OF SCREEM TO VIAB 15

192 :

195 REM THIRD, SET UP THE PART OF THE SCREEN THAT WILL CHANGE.

200 VTAB 17 : REM TAB DOWN TO NEW SCREFN

210 HTAB 15 : PRINT "LIE OR LEI"

220 PRINT : HTAB 10 : PRINT "(TO TELL AN UNTRUTH)

230 PRINT : PRINT

240 HTAB 6 : INPUT "TYPE IN THE QORRECT SPELLING:";AS

250 IF AS = "LIE" THEN 290

260 HTAB 7 : PRINT "NO, THAT'S NOT QURRECT, TRY AGAIN."

270 FOR X = 0 TO 1000 : NEXT X

280 HOME : GOTO 210

290 HOME : HTAB 15 : PRINT "WONDERFUL"

300 FOR X = 0 TO 2000 : NEXT X

305

307 REM RESET THE SCREEN BACE TO NORMAL

310 POKE 34,0

320 HOME

330 END

3-15

Feature # 10:
KEEP SCORE DURING A QUIZ AND PRINT OUT THE NUMBER RIGHT AND % RIGHT
Necessary command:

Set your right answer variable to zero at the beginning of the test
section: 10 RIGHT = 0

Ask your questions in the usual way.
Example: INPUT "WHAT IS 2 + 2?";AS

Immediately after each question, test the answer. If the answer was
correct, then add one point to the right answer variable:
Example: IF AS = 4 THEN RIGHT = RIGHT + 1

After all the questions have been asked, then you can print out the
result by printing the value of RIGHT.
Example: PRINT "YOU GOT ";RIGHT; " ANSWERS (QORRECT OUT OF 10 QUESTIONS"
PRINT : PRINT "YOUR PERCENT (QORRECT IS ";RIGHT/10 * 100;"%"
(watch your spacing in the print statements)

When the next student uses the program, the RIGHT variable will be
reset to zero at line 10.

Variations:
There are many variations possible. You may create a variable named WR

{meaning wrong — you can't use WRONG because the reserved word ON is in the

middle of wrong) and store the number of wrong answers in that variable. It is

possible to store the scores of several quizzes during the lesson. Just use
different variable names for each quiz and then print out the results at the
end, You could alsc add up the variables and produce a grand percentage that
were answered correctly:
1000 PRINT "YOUR TOTAL PERCENTAGE (CORRECT FOR ALL THE QUIZZES IN.THIS
LESSON IS "; A+ B+ C+ D /40 * 100;"%"

{this assumes four quizzes and a total of 40 questions — A is
the score on the first quiz)

Feature # 1]:

T0 PAGE BACK AND FORTH THROUGH TEXT WITH THE ESCAPE KEY USED TO
GET OUT OF THE PROGRAM

Necessary commang:

Tell the student that at the bottom of each text page, pressing a
"B" will return to the previous page and pressing "F" will advance
one page. At the bottom of each text page print the line:
4000 HIAB 27 : VTAB 22 : INVERSE : PRINT "B<- ->F": : GET AS :
NORMAL: (this can be a subroutine that ends with
a RETURN)
Now we will test the input for each page using the ASC command.
If the input was a "B" then we will go back to the line number for
the start of the previocus page:
140 IF ASC(AS) = 66 THEN line number of previous page
{the 66 here is the ASCII value for the letter B)
Next we need to check if the escape key was pressed:
5000 IF ASC(AS$) = 27 THEN line number to end the program
(the 27 is the ASCII value for the escape key)
Next we need to check if the F key was pressed:
5010 IF ASC(AS) = 70 THEN RETURN (continue on)
(the 70 is the ASCII value for the letter F)
Lastly, we need to error trap for any other keys that might be pressed

accidently.

[
b

Sample program:

90 HOME : PRINT "THIS IS THE TITLE PAGE"
94 FOR X = 1 TO 2000 : NEXT X

85 =

96 HOME

100 PRINT "THIS IS PAGE 1" : REM PUT PAGE ONE OF TEXT HERE
120 GOSUB 4000 : REM GET INPUT LINE
130 IF ASC(A$) = 66 THEN 90

140 GOSUB 5000 : REM GO FORWARD, FSCAPE AND ERROR TRAP
150 :

200 HOME

210 PRINT "THIS IS PAGE 2"

220 GOSUB 4000

230 IF ASC(AS) = 66 THEN 96

240 GOSUB 5000

250 :

300 HOME

310 PRINT "THIS IS PAGE 3"

320 GOSUB 4000

330 IF ASC(AS) = 66 THEN 200

340 GOSUB 5000

350 :

355 END

360

3998
3999
4000
4998
4999
5000
5010
5020

5030

REM REST OF PROGRAM GOES HERE

REM INPUT SUBROUTINE
HTAB 27 : VIAB 22 : INVERSE : PRINT "B<- ->F"; : GET AS :
NORMAL: : RETURN

REM FORWARD, ESCAPE AND ERROR TRAP
IF ASC(AS) = 27 THEN END : REM IF ESCAPE KEY PRESSED THEN END THE
PROGRAM

IF ASC(AS) = 70 THEN RETURN : REM IF AN F PRESSED THEN GO ON TO
NEXT PAGE
GOSUB 4000 : REM IF ANY OTHER KEY PRESSED THEN REFRINT THE INPUT

LINE
GOTO 5000 : REM RECHECK FOR ERRORS

3-19
Feature £ 12:
TO USE INVERSE TO CREATE BORDERS OR BOXES AROCUND TEXT; TO INVERSE A
A SINGLE WORD WITHIN A SENTENCE ~— ALL ON THE TEXT SCREEN.
Necessary command:
For borders and boxes use;
10 INVERSE Note: we are on the text screen.
20 HTAB 5 Tab over to start of a horizontal line.
30 PRINT" " Use spaces to print as long a line as desired.

40 FOR X = 1 T0 10 Position the beginning of a vertical line.

50 HTAB 5 : VIAB X Tell how long the vertical line should be.

60 PRINT " " Print one or several spaces for thin or
thick lines.

70 NEXT X

80 NORMAL Get back to the normal mode and then print
words as usual.

Following the commands above results in boxes or emphasis lines anywhere on
the text screen. You can vary your boxes by using inverse and any character on
the keyboard instead of the space. For example, replace line 60 above with
FRINT "#". You can also use keys like "$" without the inverse for patterned
boxes.

For inversing a single word or phrase in a sentence:

10 PRINT "WE ONLY INVERSE "; Words in normal print.

20 INVERSE Change to inverse.

30 PRINT "IMPORTANT"; Print words in inverse.
40 NORMAL Change back to normal.

50 PRINT " WORDS ON THE SCREEN" Continue printing.

Note the use of the space after the word INVERSE in line 10 and the
semicolon. The space prevents an inverse space (sloppy looking) and the
semicolon keeps the next word on the same line. Note also the space before
WORDS on line 50 for the same reason. We could write the entire command on one
line but it is so easy to make errors in long lines and they are much more
difficult to edit. It could read:

10 PRINT "WE ONLY INVERSE ";: INVERSE : PRINT "IMPORTANT";: NORMAL :
PRINT " WORDS ON THE SCREEN"

Feature # 13:
SELECT A REINFORCING GRAPHIC OR MESSAGE AT RANDOM
(i.e., providing some variety as you praise a student)
Necessary command:
10 X = INT(HINUM * RND(1)) + LOWNUM
I 1

: put minimum number you want here.
put maximum number you want here.

20 ON X GOSUB line#, line#, line#, line#

Examples:
10 X = INT(4 * RND(1)) + 1
will generate a random number, stored in X, between 1 and 4
10 X = INT{10 * RND(1}) + 1

will generate a random number stored in X between 1 and 10

Comments:
"RND(1) " picks a random number between 0 and 1. This is a decimal number,

In order to get a whole number, we take the integer value: "INT (RND(1))."™ The
problem is, we still can get a zero since zero is an integer. So, we add some
value to the end to insure that we do not get a zero: "INT (RND(1)) + 1." Now
we get only the number "one" from our command., To include numbers greater than
one, we must add a multiplier. The miltiplier will be the highest value that
the computer will generate: "INT {6 * RND(1)) + 1" will generate a number
between 6 and 1.
Sample program:

10 HOME:VTAB 10

20 INPUT "WHAT WAS PRES. LINCOLN'S FIRST NAME?"; AS

30 IF AS <> "ABRAHAM" THEN 10

40 X = INT (4 * RND (1)) + 1

50 ON X GOSUB 1000,2000,3000,4000
60 PRINT : PRINT : PRINT "THAT'S THE END" : GOSUB 10000

70 END

1000 PRINT PRINT : PRINT "GOOD" : GOSUB 10000 : RETURN
2000 PRINT : PRINT : PRINT "GREAT" : GOSUB 10000 : RETURN
3000 PRINT: PRINT : PRINT "WONDERFUL" : GOSUB 10000 : RETURN

4000 PRINT : PRINT : PRINT "FINE"™ : GOSUB 10000 : RETURN
10000 FOR Y = 1 TO 5000 : NEXT Y : RETURN
Vatiations:

The subroutines 1000, 2000, 3000, 4000 could be four different graphics.
Any number of different reinforcing or negative messages can be stored and used

in this manner,

Another example (Sample program:
The following program does a number of things including the presentation of
random error messages and random reinforcements, It is worth careful study.

10 REM *EXAMPLE RANDOM MSG PRINT*

20 BEEP$ = CHRS (7)

30

40 REM * STORE RANDOM MSGS *

50

55 FORI =0 T0 2

60 READ TNCRESS(I)

70 NEXT I

80 FORI=0T02

90 READ CRCTRESS(I)

100 NEXT I

110 DATA "NO, THAT IS NOT QORRECT, TRY AGAIN."
120 DATA "SORRY, THAT IS INOORRECT,CHOOSE ANOTHER"
130 DATA "THAT IS NOT CQORRECT, PLEASE TRY AGAIN."
140 <DATA "GREAT !!! THAT IS THE OORRECT ANSWER."
150 DATA "WONDERFUL!! YOU BAVE BEEN STUDYING!"

160 DATA "SUPER !! GOOD WORK !!"

170 -

180 :

190 HOME

200 VTAB 2

210 PRINT : PRINT

220 PRINT "WHAT IS THE CAPITOL OF ARKANSAS ?"

230 VTAB 8: HTAB 2

240 PRINT "(A) BOT SPRINGS";: HTAB 20: PRINT "{(C) BATESVILLE"
250 PRINT : HTAB 2

260 PRINT "(B) LITTLE ROCK";: HTAB 20: PRINT "{D) FAYETTEVILLE"
270 ANSS = "B"

280 GOSUB 10000: REM INPUT ANSWER

290 IF CHOICES = ANSS THEN GOTO 320

300 GOSUB 10500: REM PRINT INC MSG

310 GOTO 200

320 GOSUB 11500: REM PRINT CRCT MSG

340:

350 END

9990 :
G992 REM *kkkkkkkkkkkkkikhihkk

9994 REM * INPUT ANSWER *

9996 REM *F**hkhkkkhkrkkhrhhn

9998

10000 VTAB 21

10010 INPUT "PLEASE CHOOSE FROM THE ABOVE: ";CHOICES
10020 RETURN

10030

10490 :

10492 REM **kkkkkkhrhhhhhhhhdk

10494 REM * PRNT INC RES MSG *

10496 REM ***kakkkkhkkrkhihkdk

10458

10500 MAXRDUM = 3

10510 GOSUB 11000: REM RANDOM NUMBER
10515 VTAB 23: PRINT SPC(40);

10520 VTAB 23

10525 PRINT BEEPS;

10530 PRINT INCRESS{RDUMNER) ;

10540
10550
10990
10992 REM *k&kkkkhhkhhkhhdhhhd ik

10994 REM * RNDUM NUMBER GEN *
10996 REM kkkkkkkkkkkkkkkkithkk®

10998

11000 RDUMNBR = INT (MAXRDUM * (RND (1)))
11010
11020
11490
11492 REM *hkkkkkkkdhkkhkkkkhkhkkhi

11494 REM * PRNT CRCT RES MSG *
11496 REM *kkkkkkkikkihhhkihkkhhk
11498 =

11500 MAXRDUM = 3

11510 GOSUB 11000: REM RDUMNBR
11520 VTAB 23: PRINT SPC(40);
11530 VTAB 23: HTAB 1

11540 PRINT CRCIRESS(RDUMNBER) ;
11550 RETURN

CHAPTER FOUR

PROGRAMMING TIPS

As the programmer gains experience, there are a number of methods available
to make life a little easier. No beginning textbook that we know, explains in
plain English a wide variety of helps to make coding a program a little more
bearable. The purpose of this chapter is to provide a mumber of tips that will
streamline your hours of coding and debugging computerized lessons. The reader
should note that any underlined part in sample programs must be supplied by the

user.

| |
{ Tip #1: Easy Editing |
| [

After you have entered your program and you wish to correct errors, you
will find that Applesoft is not quite as friendly as same other versions of
BASIC. One of the problems is that when Applesoft lists a line and that line is
longer than 24 characters, Applesoft will leave some blank spaces at the
beginning of the second line., These are hard to edit across. For examnple:

10 PRINT "THIS LINE IS TOO LONG TO
— . BE ON ONE LISTED LINE,"
The example shows the blanks left by Applesoft at the beginning of the second

line., To make the line easier to edit, and before you list out the lines to be

corrected, type:
FOKE 33,33

When you list line 10 above it will then look like this:

10 PRINT "THIS LINE IS TCO LONG TO

BE ON ONE LISTED LINE."
The POKE has eliminated the spaces at the beginning of the second line and
editing becomes easier.

To edit, you must know how to move the cursor. Memorize the following keys

that move the cursor: press escape (ESC) and then the "I,J,K,M" keys depending

on the direction you want the cursor to move.

P
- |
| ESC
1 I
< J K >
M
i [
(on the Ile, you can use the |
arrow keys for all edit moves) v

Here are the steps once you have mastered the cursor moves.
1. POKE 33,33
2. List the line(s) you wish to change.
3. Move the cursor to the beginning of the line you want to edit.
(If you have an Apple Ile, press ESC again (this step is not
necessary on the II+))

4. Use the right arrow to copy across the characters that are correct.

5. When you get to a character you wish to change, simply type over

the mistakes with the correct characters.

6. Continue copying with the right arrow key until you are at the end

of the line.

7. Press the RETURN key.

Your line should be correctly edited. To be sure, list the line. Practice this
method about ten times and you will be in business. Don't worry about having to
restore Poke 33,33 back to its default value of Poke 33,40 because your Apple
wili do it for you when you run a program, press RESET or do a number of other
tasks. How does Poke 33,33 work? It moves the right hand margin of the text
screen over from 40 to 33 and forces Applesoft to delete the spaces when it
lists out programs.

Another thing you can do while editing is to delete characters in a line
and then continue copying. To do this, just press the ESC key and use the K or
the right arrow to trace across the letters to be erased. When you want to
begin copying again, press ESC again and continue with step 4 above.

While POKE 33,33 is a life saver, there are a couple of camercial programs
which make editing and entering programs a breeze., "The Applesoft Tool Kit" has
a program which provides automatic line numbering and the "Global Program Line
Editot" makes editing wonderfully easy. Both of these software packages are

highly recommended.

! f
| Tip #2: Making Your Programs Easier to Read {
|

One of the best books to read which will help to code programs so that they

are more easily read is:

Nevison, John M.
. Addison-Wesley, 1978.

w

This book is a superb resource for learning how to arrange program lines.
However, not all the tips in the book work in Applesoft. One suggestion the
authors give is to put visual space between individual segments of the program.
To do this, use a line number followed by a colon. For example:

10 REM THIS IS THE END OF SECTION ONE OF A PRCGRAM

20 :

30 REM THIS BEGINS THE SECQOND SECTION OF A PROGRAM
Line 20 merely divides the two sections visually for the programmer, Line 20
does not affect the computer; it merely skips over that line. It will slow the
program down very slightly, so if speed in the program is your objective, then

don't use this tip.

! I
| Tip #3: Numbering Subroutines |

We often use large round numbers such as 8000 or 9000 for subroutines so

that they are easily remembered and used in a program. In this case, our
program would call the subroutines by commanding GOSUB 8000 or GOSUB 9000, When
we program those subroutines, start numbering them a few lines before the 8000
or the 95000 number. For example, start them at 7998 and 8998. On the two lines
before the subroutine starts, title the subroutine and explain what the
subrqutine does. When the program calls the subroutine, it will never have to
read the title lines. Thus, the program will run faster and the progfam
documentation will not be lost in the code.

7990 REM TEST STUDENT ERRORS SUBROUTINE

7999 REM THIS SURROUTINE TESTS STUDENT INPUT

70 SEE WHETHER IT IS NUMERIC
8000 subroutine starts here

| I
| Tip #4: A Caution Concerning the Text Page |
I l

If you print a letter in the 40th column of the text screen, Applesoft will
generate an extra line space, even though you did not intend this to happen -
thus the rule: Never print a letter in the 40th column of the text screen. You
can spend many minutes puzzling over that extra line when you are sure you only

put one FRINT statement between text lines. That 40th column is the culprit.

! |
| Tip #5: Printing on the HIRES and LORES Text Windows |
|

One detail often overlooked is that to print in the HIRES text window, you

must VIAB down 21 lines before anything becomes visible. This is not the case
when printing in the LORES text window. No VIAR is needed in LORES.

Another problem is to use all four lines of the text window. The presence
of a cursor takes two lines usually - a blank line and a line for the cursor,
thus, only two lines are available without some tricks. To get three lines,
merely put a semicolon at the end of the third line of printing. To get a
fourth line, you will need to begin the line with some sort of input so that the

cursor stays at the end of the printing.

[|
| Tip #6: Running a Lesson When the Disk is Booted |
I

After your lesson is created, you will want to make a lesson disk which,

when booted (or turned on), will immediately run the lesson. The student will
not have to CATALOG, LORD, or RUN the lesson. To do this, load your program
after it is complete. Put a fresh disk in the drive. Type INIT —program

pame. When the new disk is booted, your lesson will serve as the HELLO program
and will run immediately. If you have split your lesson into a number of
pieces, then the very first program which calls all the others should become the

HELLO program.

I |
| Tip #7: A Simple Protection Scheme |
!

l

If you want to prevent students from pressing RESET on purpose or
accidently to get out of the lesson or prevent them from listing the program or
loading it or cataloging the disk, use the following line at the beginning of
your program.

10 POKE 214,255 : PORE 1010,102 : POKE 1011,213 : POKE 1012,112 : CALL

1002

Once these POKES are made and the CALL is executed, you will not be able to
load, list, catalog or reset a program. If you try, DOS will merely go back to
the beginning and run your program again. WARNING: Do not add this command
until, you have made a backup copy of your program. It will prevent you from
changing your program just as it will prevent students from doing so. This
scheme will work only until your students become computer literate. When a

student learns how to break this scheme, use that student as your programming

assistant.

Here is the method of getting around this POKE cammand. This will be a
secret between the authors and you. Boot the System Master or other initialized
disk. Catalog your lesson disk. Load the lesson which is protected. Then
list. Now you can delete the security POKE line #10. Be careful not to run the
program during this procedure, otherwise, the protection scheme will be back in

place.

| I
| Tip #8: Using Quotation Marks on the Text Screen |
|

Problem: When you use quotation marks within your strings you are only
able to print up to the second quote mark.
Solution: You have to tell the computer to print a quotation mark a little
differently than other characters.
To print a line that looks like this:
SHE SAID, "ISN'T THAT WONDERFUL?"
you have to code this:
10 PRINT "SHE SAID, ";CHRS(34);"ISN'T THAT WONDERFUL?";CHRS(34)
CHRS$(34) is the only way to tell the computer to print a quotation mark.
If you want to use this feature often, you can store the command in a
variable which is easier to type. For example:
10 QUOTES = CHR$(34) or 10 QS = CHRS(34)
300 PRINT "SHE SAID, ";Q$;"ISN'T THAT WONDERFUL?";Q$

I |
| Tip #9: Turning the Printer On and Off While a Program is Running |
!

f

If you wish to turn on or off the printer during the execution of a lesson,

you will need to issue a DOS command. Try this program:

10 HOME
20 INPUT ™PURN ON YOUR PRINTER NOW AND THEN PRESS RETURN" ; AS
30 DS = QAR$(13) + CHRS(4)
40 PRINT DS$;"PR#1"
50 FRINT "THIS LINE WILL PRINT OUT ON THE PRINTER"
60 PRINT D$;"PRHO"
¢ 70 PRINT "THIS LINE IS ON THE SCREEN - NOT ON THE PRINTER"

] I
| Tip #10: Breaking Up Programs into Smaller Segments |
I |

Sooner or later, programs become too large to be held in the available

memory space. What commonly happens is that a whole chunk of your program will
be missing when you try to run it. If this happens, you are OK if you have not
re-saved the program on your disk. Before the tragedy occurs and you think you
have to re-enter a large piece of the program, there are a few techniques that
will help you anticipate the problem and deal with it. First, keep track of
about how much memory is left so that you can get a module with its own
subroutines into memory at one time. Use Tip #12 to help do this. Another
solution is to break up the program into smaller but logical chunks - each
saved as a separate program. Here's how:
s . _ . . ithi]

When you don't want to or can't merge two programs, it is possible to exit
one program and run another automatically with very little disruption of the
lesson flow, Many commercial programs do this. During the lesson, the red

light on the disk drive comes on occasionally. It is loading new pieces of the

program. Here is how that is done.

Necessary commands at the point where you want to exit one program and run
another:

10 D$ = CHR$(13) + CHR$(4) : REM STORE CTRI-D IN D$

“20 PRINT D$; "RUN next program name "

Note: Some authors recommend that line 10 need only be declared once in the
program. The authors recommend that it be repeated every time you need to move
out of the program. If you have used a GET statement or hires graphics, strange
things often happen and the computer will not remember what is in DS.

Comments:

The "program name" above is the name of the program you wish to run from
within a program. RBoth programs must be on the same diskette or one could be on
another diskette in drive 2 (then type "RUN program name ,D2"). Remember, if
you are going to run one program from another, the first program will be erased
from memory and the second one will be loaded in. This means that to get back
to the first program, or another one, the second program must also contain the
necessary commands listed above.

Usually, all values in the first program are lost when the second program
is run. For example, if you asked the student's name in the first program, it
would not carry over to the second program nor will it be there when the student
has returned to the first program. If you wish to share the information stored
in the variables between programs, use the CHAIN command described later.

The advantage of running one program from another is that the two programs
might be in different languages, or they could be too large (too many ‘K) to
store as a single program. Another advantage is that a large wait at the
beginning of the program for the computer to load can be replaced by a number of

shorter waits at various intervals in the program.

4-10

Commercial publishers also have a clever reason for having programs "DOS
out" regularly. Such programs require that a disk be in the drive at all times.
This means that the teacher cannot load up a number of computers with one
proggam and have the class use the program simultaneously. Supposedly, this
means that the school will buy more copies of the program. It's a nice plan to
earn more money -~ it might also earn the publisher's way right out of a sale as
educators look for more flexible software.

Module by module breakup

One solution is to have each module of the program be a separate program on
the disk. In this case, there might be an introductory module which has the
main menu. Any choice on the menu would DOS the program out to the appropriate
piece. If this method is used, all subroutines called by a module will have to
be a part of that module. This means that you might have the same subroutine
duplicated a number of times in different programs. In the main menu program,
check each choice made by the student and then DOS to the appropriate program.
For example:

10 D$=CHR$(13) + CHRS(4)

40 IF A = 4 THEN PRINT D$; "RUN program name which matches option 4"

At the end of the option 4 program, the commands would run the main menu
programs:

1550 PRINT D§; "RUN program name of the main menu "

A final thing you can do when you DOS from one program to another is to let the
user know what is happening. Try this: just before you DOS out, clear the
screen with the HOME command, then print a message something like: "just a
moment, please, I'm loading."” This will prevent having a blank screen with

nothing on it and the student becoming concerned because nothing seems to be

happening.

4-11

Many books recommend a simple D$ = CHRS(4) without the CHR$(13). If your
program uses the GET command, then a simple CHR$(4) won't always work. 2dding
the CHR$(13) guarantees 100% predictable results.

Carrying variables across programs -- (Thank you, Rick Jones)

If you want to carry the student's name or scores or other information
stored in variables from one program to another you will have to use the CHAIN
command. CHAIN is a binary program which loads and runs a second program
without erasing from memory the arrays and variables of the first program.
Ruthors often state that CHAIN is an Integer Basic Command that is not available
in Applesoft Basic. This is true, but somewhat misleading. There is a Binary
program on the Apple System Master Disk that allows you to simulate the CHAIN
command in Applesoft. To use it, do the following:

Step 1: Use FID or FILEM to copy the CHAIN program onto your disk, The

CHAIN program must be on the disk where you intend to link programs.

Step 2: When you get to the point in the program where you wish to DOS to
another program, add the following program lines:
10 D$ = CHRS(13) + CHRS(4)

110 PRINT DS$;"BLOAD CHAIN, A520" Note: A520 is the memory
location for CHAIN

120 CALL 520" name of next program " Note: do not put any spaces

or punctuation marks between
520 and the opening quote)
Cautions:

1. When you chain from one program to another, the first program is erased
from memory and execution begins at the lowest line number of the néxt
program.

2. FLASH and INVERSE work by altering the ASCII codes. Be sure they are reset
to normal before you call CHAIN. Failure to do so will result in garbled

commands creating unpredictable results and the possibility of

uncontrollable frustration when you discover that the command didn't work.
3. If there is an ARRAY to be passed between programs, be sure that it is
dimensioned in, and only in, the first program that uses it.
4. If the chained programs use a defined function, be sure that it is defined
in each program.
5. Be sure to standardize your variable names from one program to the next.
In other words, if you use N$ for NAME in the first program, N$ should also

be used in the next program.

Sample Program Using CHAIN

Program "ONE"
10 VTAB 10 : INPUT "TYPE YOUR FIRST NAME: ";N$
20 BOME: D$ = CHRS(13) ;CHRS(4)
30 PRINT DS;"BLOAD CHAIN,A520"
40 CALL 520™TwO"

Program "TWO"
10 HOME

20 VIAB 10 : PRINT "HI, ";NS$;", HOW ARE YOU TODAY?"
30 PRINT : PRINT "I'M FINE NOW THAT I KNOW HOW TO REMEMBER YOUR NAME."

YIOC Changes

If you are going to break up the prograin into several pieces, then the line
numbers on the VIOC should be the beginning line numbers of each module. It is

a good idea to list the program name at the top of the module or program piece.

For example:
' 10 Module One_
I !
| I Can Add |
| Module |
[f
Moving Memory

Another solution which may not require the segmenting of a program is to

move memory around in such a way as to make more room for a program. That may
often be the most sensible solution, especially if your modules are already

broken down into simple functional units. See the next tip for details.

I l
| Tip #11: Memory Maps and Moving Memory |
| |

Memory is a nystery to most people, and it is usually not explained very
well. Here is our attempt to take the mystery out of memory. One of the
problems is that the memory of a computer is invisible. You can open the cover
of the Apple and stare at the chips, but you will be no wiser. Our task, then,
is to visualize what goes on in the mind of the Apple. Let us assume that our
memory is a tall thin empty glass into which you can pour water (your program).
Like water, your program will immediately start to fill up the glass (computer
memory) . Like a measuring cup, there are marks on our memory glass to tell us
how full the glass is. But there is a major difference. We are not bound by
gravity in the computer's memory, so we need not always fill the glass from the
bottom up.

Spend scme time studying the following diagrams. Usually, programming and
reference books only present one diagram of memory. We have divided the diagram
into two drawings. The first diagram illustrates two common types of programs —
one is a program which uses neither LORES nor HIRES graphics and one which uses
LORES graphics. The second diagram illustrates what happens when a program uses

Y

HIRES graphics and provides some solutions to some obwvious problems. '

4-14
MEMORY MAP WHEN USING APPLESOFT
WITH OR WITHOUT ILORES GRAPHICS
(Assuming 64K)
Hex Address Decimal Address
SFFF 65,535
I |
| Bank Switched | <~—---Bank switched memory is for specialized
| Memory (Apple Ile) | uses only. Study the Reference Manual
| | for directions.
I I
$D000 | I_ 53,248
] | < This area is used to control peripheral
| DOS {Input/output) | devices such as printers and disk drives.
I |
$C000 _| |_38,400 PBrick wall boundary
| I
| HIMEM -—-—T |
| Boundary for |
I an Applesoft |
: program. [
I
| | <{-—-All this space is available for an
[I Applesoft program with or without
| I LORES graphics.
| |
I |
N |
[
| | Boundary for |
| | an Applesoft |
| | program to !
[| begin. }
I
$0800 _| I_ZOA.B__BU.S;ILmathdeam
|
| | <——This area used for LORES graphics.
| LORES graphics |
$0400 _| [1024
| |
| | {~——Check the Reference Manual to learn
| Work space ! how to use this space.
| (use with caution} |
$00F8 _| |_ 248 _
] ! <——The zero page has many interesting
| Zero page | routines that may be used by POKE anq
| (use with caution) | PEEK - i.e., POKE 33,33 used in editing.
soo00 _| 0

4-15

MEMORY MAP WHEN USING APPLESOFT
AND HIRES GRAPHICS
Because the space for the HIRES pages sits right in the middle of the space used
for the Applesoft program, you must plan carefully or your graphics will collide

with your programming lines and you will lose part of your program.

Hex Address Decimal Address

SFFF 65,535

Bank Switched
Memory (Apple Ile)

|
I
I
I
I
!
|
|
!

I
]
I
|
$D000 _| _ 53,248
]
| DOS (Input/output)
SC000 _| 38,400 Brick wall boundary
| [
| HIMEM —--—T I
[| < -Your Applesoft program can reside
| | here or below the HIRES page you use.
[I
[|
S5FFF _| I_ 24,575
I I
| HIRES, PAGE 2 | < -BIRES p. 2 has no text window.
$4000 _| | 16,384
I I
| HIRES, PAGE 1 ! < ~HIRES p. 1 has a text window.
$2000 _| _ 8192
[|
| | <~ ~Your Applesoft program can reside
| | here or above the HIRES page you use.
| __LOMEM |
- I
$0800 _J | 2048 Brick wall boundary
| I
| LORES graphics |
$0400 _ | I_ 1024
| |
[|
| Work space |
| (use with caution) |
SO00F8 _| | 248
I I
| Zero page |
| (use with caution) |
$0000 _| l_0

When you use HIRES graphics, your Applesoft program must be stored either

below or above the HIRES page(s) you use. This means that if you change

nothing, your Applesoft program will begin at 2048 and work its way up until it

encounters a HIRES page in use. At that point, you have problems. There are a

number of solutions:

1. Solution if you use only HIRES, page 1

a.

If you have a short program, move HIMEM down from 38400 to 8192, 'This
will prevent your program from colliding with the HIRES graphic, i.e.,
you will get an "out of memory"™ message before any damage can be done.
To use this solution, include the following lines in your control module
and then DOS out to the program you have written.

5 REM CONTROL MODULE

8 DS=CHRS(13) + (HRS(4)

10 FOKE 115,1

20 POKE 116,32

30 POKE 8192,0

40 REM NOW YOU CAN DOS OUT TO YOUR PROGRAM

50 PRINT D$;"RUN program name"

The second solution is to move your Applesoft program above page 1 of
HIRES and take advantage of the space from 16,384 to 38,400. This is
much larger than the space you had below page 1. To do this, write
a short program as part of your control module and then DOS out

to your main program,

S5 REM QONTROL MODULE
8 DS$=CHRS(13) + CHRS{4)
10 POKE 103,11
20 POKE 104,64
30 POKE 16384,0
40 REM DOS OUT TO MAIN PROGRAM
50 PRINT D$;"RUN program name"”

2. Solution if you use only HIRES, page 2

d.

If you have a short program, move HIMEM down from 38400 to 16384. This
will keep your program from colliding with the HIRES graphic, i.e., you
will get an "out of memory" message before any damage can be done. To
use this solution, include the following lines in your control module
and then DOS out to the program you have written.

b.

5 REM CONTROL MODULE
8 D$=CHRS${13) + CHRS(4)
10 ROKE 115,1
20 POKE 116,32
30 POKE 16384,0
40 REM NOW YOU CAN DOS OUT TO YOUR PROGRAM
60 PRINT D$;"RUN program name"

The second solution is to move your Applesoft program above page 2 of
HIRES and take advantage of the space from 24575 to 38400. To do this,
write a short program as part of your contreol module and then DOS out
to your main program,

5 REM CONTROL MODULE
8 DS=CHRS(13) + CHRS(4)
10 POKE 103,1
20 POKE 104,64
30 POKE 24575,0
40 REM DOS OUT TO MAIN PROGRAM
50 PRINT DS$;"RUN program name"”

3. Solution if you use both HIRES page 1 and page 2

e

If you have a short program, move HIMEM down from 38400 to 8192. This
keeps your program from colliding with the HIRES graphic, i.e., you
will get an "out of memory" message before any damage can be done. To
use this solution, include the following lines in your control module
and then DOS out to the program you have written.

5 REM CONTROL MODULE

8 DS = CHR$(13) + CHR$(4)

10 POKE 115,1

20 POKE 116,32

30 POKE 8192,0

40 REM NOW YOU CAN DOS OUT TO YOUR PROGRAM

50 PRINT D$;"RUN program pame”

The second solution is to move your Applesoft program above page 2 of
HIRES and take advantage of the space from 24575 to 38400, To do this,
write a short program as part of your control module and then DOS out
to your main program.

5 REM (QONTROL MODULE

8 DS=CHRS(13) + CHRS(4)
10 POKE 103,1

20 POKE 104,64

30 POKE 24575,0

40 REM DOS OUT TO MAIN PROGRAM
60 PRINT DS;"RUN program name"

l I
| Tip #12: Determining Space Left on the Disk and Free Memory |
I I

often, as your programs grow, you need to know how much free space there is
on the disk. The program FID (old name) or FILEM (new name) on the System
Master can tell us how many sectors are left on a disk ~ this feature is an
option on the FID or FILEM menu. As a program becomes longer and longer, we
also need to know how much more memory space (K) is available. If the program
gets too large, you will have to break it into several smaller pieces. While
you are programming, there are a couple of ways to find out how many K are left
in memory.

Method one:

Load your program and then type: PRINT FRE(0)
If the result is a negative number, then type: PRINT FRE(0) + 65536

Method two:

Study the following pointer address chart. A pointer is an indicator
to the computer giving the location of a certain boundary. The
pointers in this chart indicate the dividing line between strings,
arrays, variables, the program, and free space.

POINTER ADDRESS CHART

Hex Address
more
£C600
] .
Strings

$0800

«

Hires page two

Hires page one

T Arrays
T Simple
Variables
Your BASIC

program here

I
|
I
.|
!
I
[
I
|
|
I
I
I
I
I
I
|
|
!
I
I
I
I
I
=
I
I
I
I
I
I
I
I
|
!
I
I

more

Decimal Address

i_ 38,400

| ¢<=—————PEEK (116) * 256 + PEEK (115)
| (HIMEM. also top of strings)
I—

| <———PEEK (112) * 256 + PEEK (111)
| (bottom of strings)

I

| {<=—————~free space

!

|_ 24,575

I

|

I_ 16,384

|

|

I_ 8192

I

| {<=—————free space

|

|

|_<{————PEEK (110) * 256 + PEEK (109)
| (top of arrays)

|

| _{———————PEEK (108) * 256 + PEEK (107)
| (top of simple variables and
| bottom of arrays)

!

|_{~——————PEEK (106) * 256 + PEEK (105)

: (LOMEM moves up as program builds)
| \———————-PEFK (176) * 256 + PEEK (175)

| (gives top of program lines)

:

| 2048 PEEK (104) * 256 + PEEK (103)

| (lower boundary of program)

If you understand the drawing above and the concept that memory is being
filled up with every command you add to your program, you may find out at any
given point how full the memory is. With the program loaded in memory you
merely type in without giving a line number the command PRINT and any one of the
PEEK statements from the chart above. The computer will reply with a number
telling you where that boundary is. ILet us say I want to know where the arrays
end. T would type:

FRINT PEEK (110) * 256 + PEEK (109)

You can have even more fun if you include these statements as a subroutine
so that anytime you run your program, it will automatically tell you how much
memory you have used and how much you have left. Study the following program
and then vary it to your needs:

10 GOSUB 10000 Put this line right at the first of
your program.
20 REM THE REST OF THE PROGRAM
GOES HERE
9999 END

10000 REM SUBROUTINE TO DETERMINE
SPACE BETWEEN ARRAY BOUNDARY
2ND HIRES P. 1
10010 A = 256*PEEK(110)+PEEK (109) This gives us the array boundary.
10020 B = 8191 - A B will now equal the amount of space
left between the array boundary and
8191 which is the lower boundary for
hires p. 1 minus one,
10030 PRINT "THE TOP YOUR
PROGRAM IS NOW AT ";A
10040 PRINT
10050 PRINT "YOU HAVE ";B;"
MEMORY LOCATIONS BEFORE HIRES
PAGE 1 STARTS."
10060 PRINT
10070 IF B < 0 THEN PRINT "SINCE THE
ABOVE NUMBER IS NREGATIVE, YOU
ARE USING THE WRONG SUBROUTINE
TO DETERMINE THE MEMORY SPACE

LEFT."
10080 FOR X = 1 TO 3000 : NEXT X Here is a timer so you can read the
message. »
10090 RETURN

I |
| Tip #13: Using a Word Processor to Edit Your Program |
| [

Sometimes you will need to make some major changes in your program or edit
it severely and you'll wish you could have the power of a word processor to do
it, You can. If you use Apple Writer IIe or ancther word processor which uses
normal Apple DOS text files to store its data on a disk, you are in luck. The
idea is to transform your program into a text file, then call that text file
into the word processor. You may then edit the program and resave it as you
would any word processed file. You then get out of the word processor back into
DOS and use the command EXEC (execute) to change the text file back into an
Applesoft program. It really works!

HBere in more detail are the directions.

1. You should have an Applesoft program on a disk you wish to edit.,
Be sure you have a backup of your program just in case something
strange happens.

2, Load the program into RAM. List it just to make sure it is there.

3. Now add the following lines at or close to the beginning of the program
but do not save these lines as a part of the program. These lines
will only be temporary.

1 REM CHANGE FROM APPLESOFT TO TEXT FILE PROGRAM

2 DS = CHRS(4)

3 PRINT DS$;"OPEN ____text filename = (not the same name as the
Applesoft program name)] _

4 PRINT DS;"WRITE __ text filename (the same name as in line 3)

5 POKE 33,30 .

¢ LIST)]

7 PRINT D$;"CLOSE ___text filepame ~_ (the same name as 1n line 3)

8 TEXT : END

We used line numbers 1-8. You can use any line numbers that don't
conflict with your program. You can even put the whole mini-program on
a single line number.

4, Now you have your Applesoft program in RAM with an extra little program
added on the screen but not stored on the disk. Now type RUN (not

RUN program name !!!). The disk drive light will come on and your
program will be converted to a text file.

5. Now catalog your disk. You should have both the original Applesoft
program on the disk and a text file listed under the name you called
it. If you have made a mistake in typing the program listed above, you
will have a text file on your disk but it will be only one sector in
length. Reason tells you that if your Applesoft program was very long,
it could not fit into a one sector text file. If that happens, delete
the textfile and try again.

6. Once you have the text file stored on the disk, boot up Applewriter
Ile. Load the text file into Applewriter just as you would load any
other file: Ctrl L - program hame.

7. Edit the text file using Applewriter and save your changes as you
usually do.

8. Now you are ready to change the program from a text file back to an

Applesoft file. Get out of Applewriter and then boot the disk with the
text file on it.

9. As soon as you get a cursor, type EXEC ___ text file name

10. Magically, you will get an applesoft program on your disk named the
name of the text file,

Readers may be interested to note that this technique was used to print
out the Apple Demo program in chapter 2 of this book. The Applesoft program for
Apple Demo was converted into a text file and then brought into Apple Writer.
All the marginal comments were then added and the result was printed out in

camera ready copy. Many hours of typing and proofreading were saved.

! I
| Tip #14: Clearing the Screen in LORES Graphics |

Programming manuals usually recommend that to clear the screen from LORES

graphics back to the text screen use: TEXT : HOME. Following this suggestion
creates a bothersome flash of symbols on the screen. To eliminate this flash,
try clearing the graphic screen to black first, then home. Use GR : HOME in the

place of TEXT : HOME.

CHAPTER FIVE

GRAPHICS AND TEXT

The field of graphics for the Apple has seen an explosion of new ideas and
commercial programs to help the designer of educational lessons. In this
chapter, we will give our best suggestions, knowing full well that daily, new
techniques may make same or even all that we say obsolete.

There are a number of camercial packages which assist in the creation of
both HIRES and LORES graphics. Some of these packages include "Graphics
Magician," "The Complete Graphics System," "The Power Pad," "The Koala Pad," and
"Alpha Plot." The reader is urged to explore these packages. Some
graphic-assist programs require peripherals such as graphics tablets and
joysticks for drawing., Others use only keyboard controls. Such tools can make

the creation of graphics and animation an enjoyable rather than tedious task.

Do It Yourself Graphics

Many times, you may wish to program your own graphics and not rely on a
commercial graphics package. The following tips are designed to supplement
current manuals dealing with graphics on the Apple. The first group of tips
deals with LORES graphics and the second group deals with HIRES graphics.

| l
| Tip # 1: LORES Graphic and Text Screen Grids |

Several types of grids and hints are given here to make the planning and

programming of LORES graphics and text screens easier.
How Long is 40 Spaces?
Often as you are programming you will type the command:
10 PRINT "

If you start printing words, how will you know when you have printed 39
characters signaling the end of the text screen (remember, we have advised not
to print in the 40th space)? A simple way to know is to type letters until the
end quotation mark would be exactly under the beginning quotation mark on the
screen. For example:

10 PRINT "I can keep print words until the last quote is under
the first"
The Text Screen

A copy of the text screen has been provided on page 5-6 which includes
shading at every five colums and rows. This will help you plan and center your
text.

Text Tvping Guid

If you like to plan your text screens using a typewriter, you may use the
two guides provided. One guide is for use with elite or 12 pitch typewriters,
the other for pica or 10 pitch typewriters. To use the guide, make a bhotocopy
of the page, insert it in the typewriter, center the crossed lines with your
typewriter's vertical and horizontal line guides - then each letter you type
will fit exactly in a text screen position. The guide makes it easy to plan for

centering, line lengths, and vertical position on the screen.

LORES Graphics Screen

A copy of the LORES graphic screen has been provided on page 5-7 which
includes shading at every five columns and rows. This will help you plan and
center your graphics on the screen.

; The third LORES grid page is for those of us who make many mistakes and
don't want to use a whole sheet of paper every time we experiment. Six LORES
screens are provided. If you use a medium point magic marker, you can fill one
square of the grid with one swipe of the pen. You can experiment six times and

waste only one sheet of paper.

Text Screen Typing Guide - ELITE

1111111111222222222233333333334
1234567890123456789012345678901234567890

O 00~ N P L B

O OOIT00 Fo R

— =
o= O

| ST S N N T e e e R Ry
WK = OWoo~OWL W

o
£~

1111111111222222222233333333334
1234567890123456789012345678901234567890

O 00~ Oy B W R =

1111111311222222222233333333334
1234567890123456789012345678901234567890

5-4

D QO =1 N LA P D N e

Text Screen Typ

11111111112

1234567890123456789012345678901234567890

ing Guide - PICA

22222222233333333334

O 00 Oy U B LR e

11111111112
12345678901234567890

22222222233333333334
12345678901234567890

5-5

1111111111222222222233333333334
1234567890123456789012345678901234567890

Horizontal Tab--—»
1 2 3456 7 8 9 1011121314 1516 17 18 19,20[21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1

<—--qu], TROTLIaA

O W W N oot obh oW N

9-<

TEXT SCREEN

Horizontal Lines----»

-~

0 1 23456 78 910111213141516171819[2021222324 252627 2829 30 313233 34 3536 37 38 39

€————SoUTT TTOTIIOA

LOW RESOLUTION GRAPHICS SCREEN !

With Text Window

Horizontal Lines----»

01 2 34 56 78 9 IOII1213|415161718192027222324252627282930313233‘343536373839

«----S9UTT [BOTIIdA

DU NPD BN - O @y DN B bd b = O

| Y

LOW RESOLUTION GRAPHICS SCREEN T

Full Screen

! I e i i { |
“ j! P i
e = Lt 4 i =y :
Libr { s y !
Pl I i i v
A I i _ !
: i .
T i !
HEr re T \ !
1TI L Lo L[RN NN . 1
i S RN SV S OO O O i i .
o i | FRN N OV 0 O A I
Pipd _“_r. L Le N ddy L ¢
i.eq L - A W S S Y VO O I I [b
NSS! I N
o] b .+ iy iy ¥
S O Y S O SO0 0 Y VA T I U 5 O O } IR T Ry O i ; PRI
AREAEEu s] " : Tiik
L . L S R
= - 1 -k 1] S N ,l#fm i i
}

!

(IR
r—m e

Trrr

r——

|
foopm e ey At

B

15
8 20

1

o
i
-1

T b
i

et AL R R

}_.

1

11+t B

—
L.
I

T

SR)

- ke
T
H

|
O

T4

APPLE LOW RESOLUTION SCREEN (please copy)

: . LLLE
T : T
LT ST 1 LI ! i
gt LT _ m i L GELIT T
. s h Ly L b L
SREApEREw + ! FECEE i
i [. i i R i N
. v CL I e ST ;] z
3 i . r* BN R ; ' Jopeill —
T ; IR B ' ,
4 \.r‘mr [. _!%JT A lx«. ‘ r N
. i 4 L B mﬂ,. H } u
.L|m Iiw»_ L Tl T o =
_ . Lofoad 4 L. H i
_ -} ﬁ IR Tu. v L -l i i
3 Rias it I :
- . H .- Lol .
T + m lnr.w.”: nnm p. - - :
' SNSRI S Oy -4 e -
i L bt WT o r
RN Peuaian |

RS N S

oo SR RSSO -

:}-—~ R | ;
B I Earna 4 -

-10

[&}

I I
| Tip # 2: Finding Designs for LORES Graphics |
[|

We have found that many students use counted cross-stitch books to help

them design LORES graphic pictures. This works extremely well except for cne

problem: the Apple blocks of color are not square - they are rectangular. This

means that your picture, if entered exactly as the cross-stitch book suggests,

will turn out wider than it is tall and will be somewhat distorted. If you

adjust for this factor, using designs is a great time saver.

| I
| Tip # 3: Debugging Graphics |
I I

One of the more bothersome problems with typing in the commands for

graphics is that some typing mistake will be made and you will have one little

square in your drawing that is the wrong color or out of place. How do you find

it? We have two suggestions:

1.

2.

Put numerous remark statements in your program lines, i.e., REM ROOF;
REM FLOWERS; REM SKY; REM MOVE CAR ACROSS SCREEN... This will help you
locate problem sections faster.

As you type in the commands, run your program often - every several
lines. You will be able to check the few lines you just entered to

see that both color and position are correct. Instead of clearing

the graphics screen everytime you run the program, just type your

program lines in the text window. Much grief will be eliminated,

-11

[$7]

3. For complex designs, write your code out on paper before you enter
it in the computer. This makes it easier to type in later.
4. Use FOR/NEXT loops for repetitive drawings, i.e.,
FOR X =5 T0 10
VLIN 5,X AT 10
NEXT X
It is easier to correct height and width in such loops than correct

many lines of code.

: | I
| Tip # 4: Animation on the LORES Screen |
| I

If you are going to animate computer graphics you should understand the
general principle of animation in film., In a cartoon, thousands of drawings
must be made to make the characters move. If you want Mickey Mouse's hand to
move from his side to overhead, you must have numerous pictures showing the arm
in positions from straight down, to outstretched, to raised overhead. Each of
these pictures is shot with a camera and then flipped fast before our eyes. The
principle of persistence of vision tricks our eye into believing that Mickey's
arm really moved.

The same principle is used to animate IORES graphics. Suppose we have a
car that we want to move across the screen from left to right. The car will be
the same shape and color in each position and the background will be blue sky.
The steps will be:

1. Draw the sky and the car at the left of the screen.

2. Re—draw the sky (covering over the car) and re-draw the

car one position to the right.

-

3. Repeat the procedure until the car is at the right side of the screen.,
Read and think about the above three steps until you can visualize in your mind
what should happen.

Now let us say you will have to have the car in ten different positions
from left to right in order to make the animation look fairly smooth and not
jerky. Will you have to plot the car ten different times? Fortunately not if
you kﬁgw something of the coordinate system you were taught in high school
algebra. The coordinate system on the Apple is samewhat similar, Visualize the
following axis having all positive numbers:

X Axis —>
1l 2 3 4 5 6 7 8 9

0
A
C

Nk WNNHO

!
I
b4 I
Axis | B
I |
I | D
v
To give the address of a point on the grid we must give that address in
relation to the zero point (where the two axes cross). Thus our A in the graph
above is at 0,0. We give the X axis value first and the Y axis value second.
Point B is at 4,3 (disregard negative values) or we can say B is at X+4, Y+3
from the zero point. Point C is at X+8, ¥Y+l. Point D is at X+l1, Y+5. Recall
that the LORES screen starts counting from the upper left hand corner in the
drawing above,
Now if we were trying to draw a small box on the LORES screen in the upper
left hand corner of the screen, we could give two different sets of cammands:

10 HLIN 0,4 at 0

20 HLIN 0,4 at 1
30 HLIN 0,4 AT 2
40 HLIN 0,4 AT 3
50 HLIN 0,4 AT 4

Or we can write the same thing in Xs and ¥Ys:

10X=0:Y=0

20 HLIN X,X+4 AT Y
30 HLIN X,X+4 AT Y+l
40 HLIN X,%+4 AT Y+2
50 HLIN X,X+4 AT Y+3
60 HLIN X,X+4 AT Y+4

A still easier way is using the FOR NEXT commands
10X=0:Y=20
20 For Y = Y to Y+4
30 HLIN X,X+4 AT Y
40 NEXT Y

Now we can move our box anywhere on the screen by changing the values of X and
Y:

Now let's put the drawing of the box in a subroutine and call it whenever we
want it, Try this:

10 GR

15 REM 'RAW RBROX IN UPPER LEFT OF SCREEN
20 COLOR = 2

30 X=0: Y = 0: GOSUB 220

40 :

50 REM DRAW BOX NEAR THE CENTER OF THE SCREEN IN A DIFFERENT QOLOR
60 COLOR = 4

70 X =20 : Y=20 : GOSUB 220

80 :

90 END

218 :

219 REM DRAW BOX

220 For Y=Y to YH4

230 HLIN X,X+4 AT Y

240 NEXT Y

250 RETURN

Now we are ready to attempt to move the object across the screen. Let us move
our box across the top of the screen from the left edge to the right edge. We
will move the box one position at a time, changing the background color and
replotting the box each time to make it disappear before the next box is
Plotted. In our example, the background color is black and our box is magenta.

10 GR

20 REM SET THE Y POSITION TO 0 WHICH WILL REMAIN QONSTANT
30Y=20

40 REM USE A FOR NEXT LOOP TO CHANGE THE X POSITION

50 FOR X = 0 TO 15

60 QOIOR = 2 : GOSUB 220 : REM DRAW COLORED BOX
70 QOLOR = 0 : GOSUB 220 : REM ERASE BOX

80 NEXT X

90 END

218 :

219 REM DRAW BOX
220 For Y=0 TO 4
230 HLIN X,X+4 AT Y
240 NEXT Y

250 RETURN

Warning: None of our box can be printed outside the limits of the screen.
Our X value must never be more than 39 or the program will stop and we will get

the error message: "ILLEGAL QUANTITY ERROR,"

I l
| Tip # 5: Using HIRES Graphics |
| |

Using HIRES graphics with the Apple computer is quite different than using
LORES graphics. It also comes with its own unique set of benefits and problems.

One of the biggest problems is that the Apple computer was designed so that
the part of memory designated to handle the HIRES graphics mode is right in the
middle of programmable memory. (See Memory Mapping in chapter 4: tip #11) This
is a distinct disadvantage in that programs must be short. Breaking up large
programs is necessary. (See tip # 10 in chapter 4)

There are several ways to draw pictures using the Apple's HIRES
capabilities. First there are the Apple HIRES commands (HFLOT, HCOLOR, HGR,
HGR2). These commands are good to use when the HIRES picture is simple, i.e.,
using straight lines, or using mathematical formulas to plot curved lines. A
disadvantage of using this method from your BASIC program is that the commands
take up a great deal of the precious memory space left for your BASIC program.

A way to get around this problem is to write the code and run the program to

draw the picture that you want, and then BSAVE the picture into a binary,
screen~image file that can be called into a BASIC program. To do this, run the
program that draws your picture and while the picture is still on the
screen, issue this command:

BSAVE picture name,AS$2000,L$2000

{to draw on HIRES page 1)

or

BSAVE picture name,A$4000,L$2000

(if you want to draw on HIRES page 2)

(the A means the address and the L is the length of the picture)

If you catalog your disk after the above command has been issued, there
will be a binary file with the same name you called your picture. To use the
picture from your BASIC program, all you need are two commands:

HGR or HGR2
BLOAD picture name,A$2000 or BLOAD picture name,A$4000

There are several very good packages that aid the programmer in creating
very professional looking HIRES graphics. One of the greatest features of these
packages is the ability to fill-in shapes you have created with almost any color
imaginable. You don't have to be a programmer to create the pictures but you
have to know a little about programming to be able to use them in your programs.

Some of the best packages are the Graphics Magician by Penguin Software,
Alpha Plot by Beagle Brothers, and The Complete Graphics System by Pepguin
Software. In addition, VersaWriter, the Apple Graphics Tablet, the Power Pad
and the Koala Pad are important mechanical tools. EFEach of these software and

mechanical aids is easy to use if you practice.

Alpha Plot's biggest advantage is its ability to be used with only the
keyboard as an input device. 'The other software listed in the above packages
require paddles, tablets, or joysticks in additicn to the keyboard to draw
pictures. The tablets have an advantage over the joystick, keyboard and paddles
in that you can "trace" the picture that you want toc draw as long as you have it
in the correct scale. The additional peripheral devices seem to be well worth
the investment because of their extended capabilities.

When you use a peripheral device such as the Koala pad, saving one picture
requires 34 sectors on the disk. This is a major limitation when trying to save
more than a few pictures on the disk. Luckily, there are several scrunch
programs available which will compress these 34 sector pictures down to 7-15
sectors. One of these scrunchers is on the Alpha Plot disk, another commercial
program is named "Picture Packer." Watch for other programs as they become
available. Before you can use the "scrunched" picture in your program, you must
"unscrunch”" it using the directions in the package.

Versawriter, Alpha Plot, and The Complete Graphics Systems all have text
writing capabilities built in that are superior to the Graphics Magician. They
allow you to change the size, direction, color and spacing of the letters that
you type onto a HIRES picture. There are several companies that offer disks
which contain various fonts (differing lettering styles) to be used on HIRES
pictdies. Some of these are Fontrix, Applesoft Tool Kit, and Apple Mechanic.

You can add text, using these different fonts to pictures created_with any
of the packages or pictures you have created using the HIRES commands as long as
they are saved in the 34 sector format. To add different styles of text to a
picture:

1. Save a HIRES picture on the disk in the 34 sector format (see directions

on the previous page)

=17

[

2. Load one of the commercial font programs and follow the directions
for placing lettering where you want it on the picture you created.

3. Re—save the program on your disk in the 34 sector format.

4. "Scrunch" the picture if you desire.

Versawriter's strongest point is one of its drawing features. It allows
you to draw lines between two points like the Graphics Magician and Alpha Plot
and, in addition, it has a "pen up" and "pen down" feature that allows you to
draw curved lines of varying heaviness. You can draw a wide, heavy line or a
light, narrow one. It also has a reverse color feature that is nice (Alpha Plot
has it too}. You can draw with white on black; then if you don't like it,
change it to black on white.

The Graphics Magician is by far the nicest package of the three for several
reasons. First, the Graphics Magician saves picture drawing commands rather
than screen images. This means that each picture you draw takes up very little
space on a disk. Even the most complex pictures take less than 5 sectors. This
means that you can put up to one hundred pictures on a single disk. It also
means that the pictures draw faster than the 34 sector type.

Alpha Plot and Versawriter provide no easy way to erase mistakes that you
make while drawing. If you draw something over a part of the screen that
ghouldn't have been drawn, too bad, start over. The Graphics Magician provides
two ways for editing your pictures that are fast, easy and very handy. You can
delete steps that you have made so if you don't like the last step, just press

the D key and delete it! What you have drawn to that point will still be

intact.

Graphics Magician also allows for pictures to be laid, one on top of the
other without erasing what is already there, like using transparencies. This
can be an extremely useful tool in educational software. It also has an
animation system that is more for the advanced programmer but is not impossible
for the beginner to understand. Educational programs must compete with exciting
arcade games so the more graphics we can put into the educational programs the

better.

5-19

| 1
] Tip # 6 : Instant Graphics |
| I

You may want HIRES graphics to pop onto the screen instantly rather than
draw slowly. A couple of simple PEEKs and POKEs along with a little fancy
programming will do the trick. First you have to understand that just because
you cannot see a picture on one of the HIRES screens, it doesn't mean that a
picture is not there. A HIRES picture will only disappear after a HGR or HGR2
command. For example, you are looking at a picture from page 1 and you want to
have a picture ready to show from page 2 immediately upon same preset condition.
Here is a sample program to handle that:

10 HGR Set page 1 graphics
20 BLOAD picture #1,A$2000 Load a picture and show it on page 1
30 VIaB 21 Print something in the text window
40 PRINT "THIS WILL APPEAR

IN THE TEXT WINDOW OF PAGE 1"

Now while our learner is looking at the picture on page 1 and reading what
the text window has to say, we'll draw the second picture on page 2, The order
in which the camands are executed is the most important part.

50 POKE 230,64 This poke says, draw the next
picture loaded on page Z.

60 BLOAD picture 2,AS4000 Load the picture that you want on
page 2 but don't show it.

70 GOSUB 1000 Print a page turning command in the
text window of page 1.

80 POKE -16299,0 This poke switches you from page 1

5-20

to page 2 without clearing either
page - instantly.

90 POKE -16301,0 Add the text window to page 2
(POKE -16302,0 would take it away)

**x 95 GOSUB 1006 Hit the space bar when you want
to go on.
100 POKE ~-16300,0 Lock at what was previously drawn
: on page 1.
999 END

1000 REM SUBROUTINE FOR SPACE BAR

1050 RETURN

**If you wanted to draw a new picture to page 1 while looking at page 2, then
between 90 and 95 add these lines:
91 POKE 230,32 This will draw the next picture on page 1
92 BLOAD picture 3,A32000 This tells the computer which picture

to draw on page 1

I !
| Tip # 7 : Drawing on the HIRES Screen |
f |

When you are planning a line drawing for a HIRES screen, it is hard to find
a piece of graph paper that is 280 by 160. The following page of graph paper is
one eighth of the HIRES screen. It can be used in a number of different ways.

If your picture takes up only part of the screen, just draw your figure on the

5-21

graph paper and then figure ocut the coordinates of where to place it on the
screen. You can use one or several graphs pasted together for this purpose.

Another technique is to let each square on the graph equal five dots on the
screen or ten - whatever will help you visualize what you need.

If you need to see the entire HIRES screen, you will have to piece 8 of the
following graphs together and then add the row and column numbers.

This graph can also be a handy tool in planning the colors you can and
canﬁot use in certain columns of the HIRES screen. FEven numbered columns can
display black, purple or blue (even color numbers 0, 2, 4 and 6). 0Odd numbered

columns can display black, green or orange (odd color numbers 0, 1, 4 or 5).

Sample graph:

Sample graph
is 1/8 of
actual HIRES
sCreen

5-22
1
1
)
i
3
I
1
} o
|
N
i
I
i
.
:iT
]
i
]
|
{
I
T
i
|
|
-
it

.
f
T
!
;
I
I
j
=TT
!

1
1
| T 1
|
i
|
T
[‘1
{
]
!
|

e H- N] . -
0 O I O 14 4 - L4 AT -
-+

please copy
T
|
I
1
]
i
[

Ir.....wl - - -
A

- -
g AT W
9 _ | L i
o T 1]

- a1 4]
o 1 N
2 -t H § EENEE RN NN
2 RENEN ‘
J
=1 ARENE
2 R A
= m
= | -
E — —_—— —
R | —}
[
S - k]
nﬂhuu 7] I 1] 1" TT1T T1 711
o RERNNE L] il
= e - wa ml JE G G I S =} 44—
) Awmn - |
3 R RN AR RN R AR aR ER g pny an A AN R LA B O o S i

B T EEERERD : _ 1 P I N _ 1l | O O O 8 BEEERR

o A S DR L O N U O I S 2 -

CHAPTER SIX
SIMPLIFIED GUIDES TO WORD PROCESSORS

WORD PROCESSING WITH APPLE ITe WRITER
— a short quide by David V. Loertscher —

Equipment - an Apple ITe computer with an 80 colum text card inside the
computer, at least one disk drive, a monitor, one disk marked Apple Writer II,
and one blank disk.

The purpose of this short guide is to introduce the most commonly used
features of Apple Writer Ile. Using this guide will prepare you to consult the
Apple Writer Manuals with more understanding. Our objective is to help you get
your feet wet.

Getting Started
1. Put the Apple Writer disk in Drive One (label side up and close drive
door) .

2. Boot the disk by turning on computer (adjust monitor if necessary) .

3. After Copyright Screen comes on, press RETURN and wait until red light on
drive goes off. The word processing program is now available in your
computer.

4. Remove Apple Writer disk from drive and insert blank disk to initialize it.
5, Type CTRL O (Hold down the key marked CONTROL and type the letter 0).
6. Type G then type S6,D1 and press RETURN and wait until red light goes off.

7. DPress RETURN to exit - you are ready to "process words".

8. You now have initialized a storage disk for your files. The next time you
start with Apple writer you will not do steps 4-6. Instead, you will
insert your storage disk after step 3.

Writi the S

Your blank screen is now an electronic piece of paper. The blinking cursor
is your electronic pencil. The strip across the top of the screen is the data
line. It contains seven pieces of information that will be helpful later on.

Use the keyboard much as you would a typewriter including the shift key for
capital letters and caps lock to make all caps. The biggest difference is not
having to use a carriage return at the end of each line. As you type a line,
the program will push words on to the next line when it gets too full —— its
magic — its called word wrap around. Each line will take up to 80 characters

(including spaces) .
Do the following:

1. push the CONTROL key and the letter Q down at the same time. This should
give you the "Additional Functions Menu." Now push G. Your cursor now has
a bracket inside it. When you push the return key from now on, it will
Jeave a bracket there. This will show you where your carriage returns are.

After you get used to word wrap around you can turn off the bracket by
pressing CONTROL Q and G again.

Hold the space bar down and notice how the postion counter (POS) works. On
what number does the cursor return to the left line? (answer:80)

To get rid of all those spaces you just made on the screen, press DELETE
and hold it down until the POS number returns to zero.

Now type in the following joke but do not type in a carriage return until

you are at the end of the joke. Put five spaces on your screen to indent
the first line of your joke.

What did the baby porcupine say when it backed into the cactus? Is that

you, Mother?]

Does your joke look just like the one above? If you made any mistakes or

you have a carriage return you should not have, use the DELELTE key to erase and
do it over again.

Now add a new joke as a new paragraph:

What is black and shiny and lives in trees and is dangerous? A crow with

a submachine gun.]

5.

8.

You can move your electronic pencil (the cursor) around by using the arrow
keys. Try skipping through the text with the four arrows. You can move
one letter at a time by pressing the arrow once. You can move faster by
holding the arrow key down. You can skip even faster by holding down the
FILLED APPLE and the arrow keys. Get your curscr back to the end of the
second joke.

We can add words in the middle of sentences as if by magic. let's do it.
Use the arrows to move the cursor until it is on the first "b" of "baby" in
the first joke. Now type the word "little" and add a space at the end.
Notice how all the words in the paragraph are pushed aside to make room for
the new word., Now add these words to the second joke: usually lives ;

in big tall trees.

Now you need practice in deleting and adding. The DELETE key only works
from right to left. In the first joke, delete the word "little™ by putting
your cursor on the first letter of "baby" and deleting left. Now delete
the words "big tall® in the second joke.

Now add a new joke right as a new paragraph between the other two jokes:

why does an elephant have a trunk?

it sees a mouse,]

9.

10.

11.

12,

So that it has someplace to hide when

Now get your cursor at the end of your document — CONTROL E is the fastest
Look for a little arrow at the left of the data line at the top of
your screen. Change the direction of this arrow by pressing CONTROL D. It
should be pointing left. Now press CONTROL X. You just erased your third
Press QONTROL: X twice more and your screen will be blank. You now
know how to erase full paragraphs.

way.

joke,

Now you are ready to do fancy things,
you know.

should. Make your letter about 50 words long.

Add a sentence in the middle of the letter.

Proofread your letter and correct your errors.

SUmmary

Type a friendly letter to sameone
Use a date in the upper right hand corner and indent as you

1.

2.

CAPS LOCK —— when down — all uppercase letters
— when up - all lowercase letters

SHIFT — use to get uppercase letters when CAPS LOCKS
is up

4 arrow keys (up, down, left, right) -- move the cursor
without erasing anything

DELETE — deletes letters from right to left
Filled Apple and arrow keys — move cursor faster

RETURN — returns cursor to beginning of next line -
not needed until the end of a paragraph of section

CTRL B ~- go to the beginning of the file
CIRL E ~— go to the end of the file

— — — — — — — — — — —— — — — —— — et .

Type CIRL S and then a name for the file (such as Letter) and press RETURN.

To make sure the file is saved, type CTRL O and select A for CATALOG and
press RETURN. Is your file on the disk? If not, get help. :
file, press RETURN, and press RETURN again. Notice that the file

has been added to the data line. If you are writing a long document,
you will want to save every 15-20 minutes (this is insurance against loss}.

your
name

To get back to

4,

5.

Before loading another file, type CTRL N and then Y to get the old file off
the computer's screen. If you don't clear your screen before loading a new
document,, you will have two documents on your screen — the old and the new.

To load a file type CTRL L and the name of the file (such as Letter) and
press RETURN. The Mem on the data line shows how much space is left on
that file. The Len show how many characters are presently stored in that
file.

Resaving is done after editing or making additions. It can be done under
the old name or a new name. A shortcut to resave the o0ld name file isg to
use CIRL S = . This will save the file with the name exactly as it is
-shown on the data line. If you use a new name then you will have two
files, one with the 0ld name and one with the new name.

To delete a file, go to the DOS commands by using CTRL O.

Summary

CIRL S — save a file onto a disk
CIRL S = — save a file under the name up in the data line

CIRL O — DOS commands (catalog, rename, verify, lock,
unlock, delete, or initialize)

CIRL L — load a file from the disk into the computer

] CTRL N — clear file off the screen

— i ey bt ety S — — — —

printing Out a Fil

You are now ready to print your letter out on the printer.

Turn on the printer.

Now you need your letter on the screen. If it is there, skip step #3.
Press CONTROL L. It will ask for a file name. Type in the name of your
file (I hope you remember what you named it — if not type CONTROL O and
option A to see what names are on the disk). Press RETURN. Your letter
should be on the screen.

Press CONTROL P

. Type np and then RETURN —The document will be printed out

on the printer. np means new printing,

Summary

Ctrl P — gets into the print mode.

? - gives you a list of formatting codes (how you want the
document printed).

np — prints out the document on your screen starting at the
beginning,

¢cp — continues to print on to the end of a previous
document.

—r——— — — — — —— — A ks o e

thi ! t Word I .

You now know the rudiments of word processing. You might want to practice
the creating and printing simple documents several times before you go on. The
rest of this doctment shows some common things you can to with Apple Writer.
Look through the headings so that you know what you can do. When you need to
add paging or move paragraphs, go to that section of the handout and practice.
Soon you will need to know more advanced techniques to make your word processing
easiet. You should now be able to read the Apple Writer manuals with some
understanding.

Numbering Pages
Apple Writer will start counting on page 1 with number 1 unless you give it

a different number for the first page. To do that, change the PN cammand on the
print command list to the number you want. For placement of numbers, begin with
CIRL P and ? followed by:

TL///%/ =-— top right corner of the top of the page

TL//%// - top middle of the page

TL/%/// -~ top left corner

BL///%/ — bottom right corner

BL//%#// — bottom middle of the page

BL/¢/// — bottom left corner

After typing one of the above, press RETURN. Did the display change? If not,
try again.

Replacing Words or Phrases

Checking again for errors.

Use CTRL B to get to the beginning of the file.

Use CTRL D to point the beginning arrow on the data line in the direction
you are checking.

Use CIRL F to find words you want to check for spelling, or usage, etc.
Put a slash mark at the beginning and end the word or phrases you want to
check., Example — /Sincerely/

CIRL F /mispelled word/correctly spelled word/ — will find the mispelled

word or phrase and ask if you wish to replace it with the correctly spelled

word. Y - replaces, RETURN - looks for the next occurrence. Any other
key - cancels,

CIRL F /mispelled word/correctly spelled word/a — will replace all
occurrences of the misspelled word or phrase in the document.

CIRL F <>< and RETURN will make the cursor jump from paragraph to
paragraph.

CIRL R will let you type right over the top of any character - won't insert
any spaces. This is really helpful when creating columns.

Movi 1 Deleti
¥hen you use the DELETE Key, everything you delete is gone forever.

Fortunately there are ways of temporarily deleting material which can then be
retrieved when needed.

1.

2-

3.

Use CTRL D to change direction of the arrow on the data line. Left is for
temporarily deleting, right is for retrieving.

For moving a few words (less than a paragraph), hold down the Open Apple
key and press the left arrow key. 128 characters can be temporarily hidden-
this way. To retrieve the hidden words, position the cursor where you want
the words placed, change data line arrow to the right, and hold down the
Open Apple key and press the right arrow key until they all reappear.

Ctrl X deletes and retrieves a paragraph from right to left. Change data
line arrow to the left, position cursor to the right of the parts to be
temporarily deleted, use CIRL X, move cursor to place for insertion, change
data line arrow to the right, and press CIRL X.

To copy a paragraph and duplicate it somewhere else, position cursor at end
of part to be copied, change data line arrow to the left, hold down

the Filled Apple key and use CIRL X. Then move cursor to desired place for
insertion, change data line arrow to the right and use CIRL X for
retrieval.

HWord Wraparound

CTRL Z ~ Turns on and off the word wraparound function (automatic carriage
return). 'The Z will appear at the top of the screen if wraparound is
ON.

Underlini
To underline text, type the backslash at the beginning and end of what you

want underlined. The backslash is printed out as a space at the end of the
word,so do not put a space after what is being underlined.

Exanple:
The name of the book is \Morning is Nigh\and it's funny.
produces:

The name of the book is Morning is Nigh and it's funny

cepteri .

Use .cj in the text on a line all by itself at the left margin and just
before the line you want centered. Then type .1j on the next line to stop the
centering., Example:

: «Cj
This line will be centered.
So Will this line.
.13
This line will pot be centered.

Setting and Clearing Tabs

Apple Writer autamatically sets tabs for you at every eight spaces. Use
the TAB key to move the cursor nine times across the screen. Notice the number
that appears on the data line after TAB. You can also set and clear your own
tabs.
l. CTRL T and typing P will purge the existing tabs.
2. Use the space bar to position the cursor where you want TABS.
3. CIRL T and typing S will create a tab position, repeating for each setting.

4.. CTRL T and typing C will clear the tab where your cursor is.

Maki 1 Usi]

This is a joy . A glossary allows you to type common phrases and sentences
with one keystroke. You store the phrases and then retrieve them anytime.

Building a glossary:
1. CTRL N (clear memory)

2. Type in definitions (composed of a one letter designator followed by the
definition).

Example:

' aacounts payable
sSincerely yours,
lwe love you very much,

Any key on the keyboard can be the designater., Even upper case letters
can be designators.

Saving a glossary:

1. CIRL S and name the glossary (glossary is a good name).
Using a glossary:

1. CTRL L to load your document.

2. CIRL Q, choose E, and type the name of your glossary. When you press
RETURN, nothing happens on the screen but your glossary is stored and is

ready to use.

3. As you are typing along and you need a phrase from the glossary, just press
CIRL G and type the letter which represents the phrase.

Example: CTRL G a prints accounts payable.

. ing ti File is Printed
1. CITRL P puts the computer into print mode.

2. Type ? to get a list of Print/Program Commands. The values listed for each
command are the "default™ values — the ones that Apple Writer will use to
print text unless you change the values.

3. To change any one of the commend values, type the two letter code and the
value you want changed. No space or = sign is needed.

.
A

Set left margin IM__ default 9
Indent paragraph margin PM___ default 0
Right margin from left edge RM___ default 79
Top line margin printed under page # TM___ default 1
Bottom margin before footer BM default 1
Set page number PN__ default l
of printed lines per page PL___ default 58

of lines from top of one page to next
PI__ default 66 (assumes 11" paper)
of spaces between lines LI____ default 0 (single space)
=double space
2=triple space

Single or continuous paper SP___ O=continuous paper _
1=single sheets fed in one at
a time

Printed on screen or printer PD___ O=screen
l=printer

Carriage return on CR___ default 0

1=add a carriage return

4. Turn printer switch on and type np (for new print) to cause the text of the
document in memory to be printed.

5. To print a document at the position on the page where the last one ended,
type cp (for continuous print).

To change print commands within the document (for example, if you want
sane lines single spaced within a double—-spaced document) then the commands
listed above must be embedded or contained within the body of the text itself.

1. Carriage return to begin a new line.
2, Type a period on the left margin and the command wanted.
3. Carriage return.

Examples:

.1i0 - would turn on single spacing

.1il — would turn double spacing on again

Jff - Form Feed. This will eject the paper from the printer and start
printing on a new sheet.

.in — Input., This will stop the printer and will display a message on
the screen, waiting for you to press RETURN before it continues
printing.

Printing Out Only Part of a [I
Use the embedded command .ep (enable print) to print out specific parts.

.ep0 —— placed at the beginning of the part you don't
want printed (on the left margin always).

.epl — placed at the beginning of the part you do want printed.
This means you must put an .ep0 at the end of what you want
printed so that printing won't continue beyond that part.

Another way to print out only part of a file is to load only a part of the
file first. This is done by specifying the beginning words and ending words of
the part you want. You must specify enough words to distinguish that section
from any other section.

1. Type CTRL L and file name followed by a comma and dl (for drive one} then a
slash mark used as a delimiter followed by the specific beginning words,
another slash mark followed by the specific ending words followed by
another slash mark.

FExample: CIRL L Weather,dl/Today is gqloomy/much effort./

These commands cause the paragraph chosen to be loaded, then the CTRL P
command can by used along with np to get a printout of that paragraph.

; Printing 1 I
1. CIRL N to clear memory.
2. CTRL L and name first document.
3. CTRL P and np to print.
4. CTRL N to clear memory.
5. CIRL L and name second document.
6. CTRL P and cp to print next document.
printing to the § - Not to the Pri

You can check you document before you waste printer paper.
1. CTRL L and name file.

2., CIRL P and ?

3. Change command PD (print destination) from 1 to 0

4. Print out using np

5. Use CTRL S to stop and continue scrolling.

COMMAND SUMMARIES

CAPS LOCK — when down - all uppercase letters
— when up - all lowercase letters

SHIFT — use to get uppercase letters when CAPS LOCKS
is up

4 arrow keys (up, down, left, right) -- move the cursocr
without erasing anything

DELETE ~— deletes letters from right to left
Filled Apple and arrow keys — move cursor faster

RETURN — returns cursor to beginning of next line -
not needed until the end of a paragraph of section

CTRL B —— go to the beginning of the file

CTRL E —— go to the end of the file

CIRL § —— save a file onto a disk

CIRL S = — save a file under the name up in the data line

CIRL O — DOS commands (catalog, rename, verify, lock,
unlock, delete, or initialize)

CTRL L -~ load a file from the disk into the computer

CTRL N — clear file off the screen

Ctrl P — gets into the print mode.

? — gives you a list of formatting codes (how you want the
document printed).
np — prints out the document on your screen starting at the
beginning.

cp — continues to print on to the end of a previous
document:,

—— — —— — ot A—— — — —— —

BEGINNER'S GUIDE TO BANK STREET WRITER

by Sherry Greathouse

Lesson One
Entering Texi i Printi

1. Boot up the Bank Street Writer Tutorial program. It is on the
back side of the master disk.

DISK MUST STAY IN THE DISK DRIVE WHEN TUTORIAL IS IN USE.

2. Do Lesson One only.

3. After completing Lesson One, remove the tutorial disk, turn it
over and boot up Bank Street Writer.*

*Bank Street Writer from this point on will be denoted as BSW.

4, Type the.following adaptation of the "The Camel" from Nobody

Really Likes A Nervous Cow by Elinor Goulding Smith, including all
spelling and typing errors:

I itch. I itch froom head to feet. BBoy do I itch.
I'm telling you, it's enough to drive yu crazy. Itch, itch,
itch and noting to scratch with. It's this kamel's hair I'm
cobered with. 2And furthermore, my feet hurt.

It's so hot today. It's hotter in New York City than it
was in Egypt, and nobody stared at you there.

5. Remove the BSW disk and replace it with a blank disk. If the disk
being used to store files has already been initialzed, go to #6.
(The disk being used for file storage does not have to be initialized
with B4. Tt can be initialized with a "Hello" program.) If the
disk is to be initialized with BSW, do the following:

a. press ESC

b. select TRANSFER MENU by using the apple key on Ile
or the arrows on the II+

C. press RETURN

d. select INIT

e. press RETURN

-

6. Go to TRANSFER MENU if not already there. Select SAVE. Press Return.
Follow the directions on the screen to name and save the file.

7. To print the file do the following:

a. get in TRANSFER MENU

b. select PRINT-FINAL

C. press RETURN

d. answer the questions on the screen by pressing
RETURN if you agree with the value shown OR
entering the value desired then pressing RETURN,
The following can be changed:

1. tharacters per line?: 40~126 (the choice will
depend on the size of paper and the type of
printer being used)

2. Spaces between the lines?: single, double, or
triple

3. Continuation of a previous file?: yes or no
("yes"™ allows the connection of a file that is
now being printed to one that has just been
printed; printing begins at the end of the
previous file and continues with line and page
nurnber)

4. Murmbering of pages?: yes, if it is to be numbered,
or no, if it's not to be numbered

5. Bhere the nmumbering beging?; number 1 if it is
to begin with the first page, or number 2 if
there is a cover sheet and the first numbered
page is to be the actual second page

6. Numbering at top or bottom?: "T" for top, or
"B" for botom

7. Pause bewteen pages?: yes or no (select yes if
individual sheets of paper are being used, so
the printer will stop after each page it prints.
and another piece of paper can be rolled in)

8. Eject last page?: yes or no ("yes" sets the printer
at the top of the following page; "no" will cause
the printer to stay at the last printed word)

9. Page heading?: wuseful if the file is long; the
heading entered appears on all pages following
the first page

.

2.
3.

7.

10. Print entire fileZ?: ves or no ("no" will allow for
only a portion of the file to be printed; follow the
directions on the screen to indicate which portion)

11. khere the text ends on a page?: yes or no (follow
the directions on the screen to make changes)

e. Turn on the printer,
f. When the printer is ready press RETURN

g. Follow the directions on the screen to print more than
one copy

Lesson Two
Cursor Movement and Correction
Boot up the BSW Tutorial program.
Do Lesson Two only.

After completing Lesson Two, remove the tutorial disk, turn it over
and boot up Bank Street Writer.

Press ESCAPE to go to EDIT menu. Select TRASNSFER MENU press RETURN.
Select RETRIEVE press RETURN.

Remove BSW and replace with the disk that has on file the text from
"The Camel™. Following the directions on the screen retrieve this file.

Once the text has been retrieved, correct all errors in the text using
the cursor and correction techniques explained in lesson two of the
tutorial.

EDIT MODE ALIOWS THE CURSCR TO MOVE AROUND IN THE TEXT WITHOUT ERASING,
WRITE MODE ALIOWS FOR THE CORRECTIONS TO BE MADE. IT WILL BE NECESSARY
TO BACK AND FORTH FROM ONE MODE TO THE OTHER WHILE MAKING CORRECTIONS.

There are six errors: from, Boy, you, nothing, camel's, covered
Go to WRITE MODE. Add the following paragraph to the file:
I really don't like camels much. When we look at

them, with their hair all over them, I itch even more. I
just might lick one of them when no one's locking,

8. Mal;e the following corrections in the paragraph that has just been added:

a. At the beginning of the second sentence change
"we" to "I”

b. At the end of the second sentence change
"more" to "“worse"

¢. In the middle of the third sentence change
"lick" to "bite"

9. Save the additions and corrections by doing the following:

a. Get into EDIT MODE

b. Select TRANSFER MENU press RETURN
C. Select SAVE press RETURN

d. Follow the directions on the screen

THE COMPUTER WILL ASK IF THE ENTIRE FILE IS TO BE KEPT AND IF THE
SAME FILE NAME IS TO BE KEPT. THE ANSWER IS "YES"., WHEN THE SAME
FILE NAME IS USED, THE OLD VERSION OF THE TEXT IS REPLACED WITH THE
NEW VERSION OF THE TEXT, THUS SHOWING ADDITIONS AND QORRECTIONS.

10. When the screen indicates the file has been saved, then select CLEAR
and press RETURN. This clears the workspace in the camputer's memory
and clears the screen. If the workspace is not cleared after a file
has been saved it will be included as a part of any other work that
may be done. BE SURE TO SAVE BEFORE THE COMPUTER IS CLEARED AND BE
SURE TO CLEAR BEFORE A NEW FILE IS BBGUN.

Four other keys which can move the cursor
around in the text:
B = beginning of the text

E = end of the text

]

U = up twelve (12) lines at a time

D = down twelve (12) lines at a time

2.
3.

4.

6.

7.

8.

Lesson Three
Using Erase and Unerase Commands
Boot up the BSW Tutorial program.
Do Lesson Three only.

After completing Lesson Three, remove the tutorial disk, turn it
over and boot up BSW.

Press ESCAPE to go to EDIT mode. Select TRANSFER MENU press RETURN.
Select RETRIEVE press RETURN.

Remove BSW and replace with the disk that has on file the text from
"The Camel®. Following the directions on the screen retrieve this file.

Go to EDIT mode.

Erase the second paragraph by doing the following:
a. Select ERASE press RETURN

b. Take cursor to the beginning of the second paragraph
so that it's under the "I" and press RETURN

c. Take cursor to the end of the paragraph by using the
down arrow so that it is highlighted by lines. Press
RETURN and follow the directions on the screen.

If ERASE has been selected in EDIT mode then the arrow
keys will do the following:

right arrow = highlights letter by letter
left arrow = removes highlighting letter by letter
down arrow = highlights line by line

up arrow = removes highlighting line by line

The second paragraph should not have been erased. It can be put back
by doing the following:

\ a. Go to EDIT mode (should already be there)
b. Select UNERASE press RETURN
c. Answer "yes" to the question that appears on the screen

IN ORDER FOR THE UNERASE COMMAND TO WORK, IT HAS TO BE USED
DIRECTLY AFTER THE ERASE OOMMAND. IF MODES ARE CHANGED OR
ANY OTHER CORRECTIONS MADE AFTER THE ERASE COMMAND HAS BEEN
USED, IT IS NOT POSSIBLE TO GET BACK THE PART WHICH WAS ERASED.

9. Go to EDIT mode. Select ERASE press RETURN. Erase the second sentence

of the third paragraph by following the directions on the screen.

10. Replace the sentence that has just been removed. Select UNERASE press

RETURN and follow the directions on the screen.

when using the ERASE command, up to 15 lines can be removed at
a time., Should more than 15 lines need to be removed, it will
have to be done in blocks. {one block = 15 lines of text)

If more than one block of text is erased (15 lines), the UNERASE
« command only works in replacing the text of the last block or
portion removed.

Lesson Four
Using Move and Moveback Commands
Boot up the BSW Tutorial program.
Do Lesson Four only.

After completing Lesson Four, remove the tutorial disk, turn it over
and boot up BSH.

Press ESCAPE to go to EDIT mode. Select TRANSFER MENU press RETURN.
Select RETRIEVE press RETURN.

Remove BSW and replace with the disk that has on file the text from
"The Camel". Following the directions on the screen, retrieve this file,

Go to Edit Mode.

Move the third paragraph so that it becomes the second paragraph by
doing the following:

a. Select MOVE press RETURN

b. Take the cursor to the line right before the third
paragraph. Press RETURN. (You have to remember to
move the spaces prior to the text being moved.)

¢. Take the cursor to the end of the paragraph by using
the down arrow or the right arrow. Text will became
highlighted. Press RETURN.

d. Using the up arrow, take the cursor to one line above
the second paragraph. This will allow for the space
between paragrapahs. Press RETURN.

e. Answer "yes" to the question on the screen.

8. This paragraph should not have been moved. It can be put back in its

original position by doing the following:

a. Go to EDIT MODE (should already be there)
b. Select MOVERACK press RETURN
c. Answer "yes" to the question that appears on the screen

IN ORDER FOR THE MOVEBACK COMMAND TO WORK, IT HAS TO BE USED
DIRECTLY AFTER THE MOVE COMMAND., IF MODES HAVE BEEN CHANGED OR
ANYTHING ELSE DONE AFTER THE MOVE CQOMMAND HAS BEEN USED, THE
MOVEBACK COMMAND WILL NOT WORK.

9. Go to EDIT MODE., Select MOVE press RETURN. Move the last sentence

of the first paragraph to the end of the second paragraph by following
the directions on the screen. DON'T FORGET TO HIGHLIGHT THE SPACE OR
SPACES BEFORE THE SENTENCE YOU ARE MOVING.

10. Return the sentence to its original position. Select MOVEBACK press

RETURN and follow the directions on the screen.

When using the MOVE cammand, up to 15 lines can be moved at a
time. Should mcre than 15 lines need to be moved, it will have
to be done in blocks. (one block = 15 lines of text)

If more than one block of text (15 lines) is moved, the MOVEBACK
command only works on the text of the last block or portion moved.,

Lesson Five
ing Find and Rep] o 3

Boot up the BSW Tutorial program.
Do Lesson Five only.

After completing Lesson Five, remove the tutorial disk, turn it over
and boot up BW.

Co to EDIT MODE. Select TRANSFER MENU press RETURN., Select RETRIEVE
press RETURN.

5. Remove BSW and replace with the disk that has on file the text from
"The Camel®™. Following the directions on the screen retrieve this file.

6. Go to EDIT MODE.
7. Select FIND and press RETURN,
8. Type in the word "itch" and follow the directions on the screen.

Answer "yes" to the question. A beep will sound when there are
no other occurrences of the word.

NOTE: If the word "the" is typed, not only does BSW find every
occurrence of that word, but also every occurence of those
three letters. Therefore, "the™ is highlighted in words
such as "whether", "they", and "either®. TO KEEP THIS FROM
HAPPENING, PRESS THE SPACEBAR ONCE BEFORE AND ONCE AFTER
THE WORD YOU WISE TC FIND,

Decisions will need to be made regarding this since BSW will
not find a word that has punctuation following it if there
was a space put after the word that is to be found. Since
upper and lower case letters are considered different, BSW
would find only "the" and not "The" unless specifically
told to do so.

9. Go to EDIT MODE,
10. Select REPLACE and press RETURN.

11. Replace the word "itch" with the word "stink". Follow the directions
on the screen,

When checking the text, it is noticed that the same word

has been misspelled all the way through. Use the REPLACE
command to correct all the occurrences of that particular
word.

The REPLACE command may be used to delete words or
characters in the text. It will delete up to 29
characters at a time. Just press RETURN when it
asks what is the replacement.

The FIND and REPLACE command can be used at any time
vhile working on the text.

1.
2,

4,

AdGitional Nof the Pank Street Wrii

Words CAN NOT be underlined in the text,

A disk does not have to be initialized by Bank Street Writer in order
to store files. Any DOS 3.3 initialized disk may be used.

. The BSW disk can be removed from the disk drive after it has been

booted up if files are being worked on. IF THE TUTORIAL IS BEING
USED, THE DISK MUST STAY IN THE DISK DRIVE THE ENTIRE TIME THE
TUTORIAL IS IN USE,

Note: If one computer is being used to type the text, but another
computer will be used to print, the computer being used to
print will have to be booted with BSW first before the files
can be printed out.

The following can be done while in WRITE MODE:

a. Press CONTROL (CTRL) and 'C' and any characters
on that line will appear centered on the print out.

b. Press CONTROL (CTRL) and 'I' and the characters will
be indented B spaces. This can be used up to 4 times
per line, Text can be indented 8 spaces, 16 spaces,
24 spaces and 32 spaces. (Apple II or Apple II Plus only

¢. Press TAB and the characters will be indented 8 spaces.
This can be usedup to 4 times per line. Text can be
. indented 8 spaces, 16 spaces, 24 spaces and 32 spaces.
! {Apple IXe only)

The Apple II+ (64K} or the Apple ITe will take approximately 3,200

words in a file., When entering text and this capacity is about to be
reached, a message will be placed on the screen indicating how much space
is left. To check the capacity level as text is being entered, press
CONTROL (CTRL) and 'S'.

If the text is going to exceed the capacity level that can be stored in
a file, SAVE the text that has been entered before the maximum has been
reached. After this first part has been saved, then CLEAR the workspace
and proceed with the typing of the rest of the file. SAVE this second
part under a different name, When printing, this second file will be a
continuation of the first file.

When a file is retrieved and there is already text in the workspace,
the file that has been retrieved is added where the cursor is located.

7. To combine files, use the following procedure:

8.

9.

10.

1l.

a. Make sure the workspace is CLEARFD
b. RETRIEVE the file you need to cambine with another file
C. Select SAVE press RETURN

d. The BSW will ask if the whole file is to be saved,
press 'N' and follow the directions on the screen
to save only the part that is to be combined with
another. Be sure and give it a new file name.

e. CLEAR the workspace
f. RETRIEVE the file that is to have text added
g. Place the cursor where the added text is to appear

h. RETRIEVE the text just saved, and it will be inserted
into the text at the point where the cursor was placed,
thus combining the text just retrieved with what is
in the workspace.

Note: If samething is too large to be combined, the
screen will display: FILE TO LARGE TO RETRIEVE.
wWhen this happens it is necessary to erase some
of the text in order to combine files.

It is possible to RENAME a file that is saved on a disk by going to
TRANSFER MENU; selecting RENAME, and following the directions on the
screen,

If files need to be removed from the disk, go to TRANSFER MENU, select
DELETE, and follow the directions on the screen.

If PRINT-DRAFT is selected, the copy will look just like what is printed
on the screen; that is 38 characters a line. It will also be printed
with large margins and spaces between the lines of text, so that editing
can be done away from the computer.

Files can be protected by using a password. A file may be given a
password when it is saved. Be sure to keep a written list of the
passwords if they are going to be used, since it is not possible to
retrieve a file unless the password is known, or the BSW Utility
program is accessible.

12. The Bank Street Writer Utility Program may be retrieved by pressing
and holding ESCAPE while the BSW is loading. The four options on the
Utility Program are:

1. Change Set Up Items — This option allows for the
changing of the pre-set values of Bank Street Writer.

2. Display Passwords — If passwords are used to protect
files, they are listed here. Follow the directions
on the screen to utilize this option.

3. Convert Writer File — This option allows for the
conversion of Apple text to Bank Street Writer text,
or the other way around.

4. Quit - As long as the BSW master disk is in drive one
the Utility Program may be aborted and Bank Street
Writer automatically reloaded, if this option is selected.

